Combining Texts

All the ideas for 'Frege's Theory of Numbers', 'Negation' and 'What are Sets and What are they For?'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

2. Reason / A. Nature of Reason / 9. Limits of Reason
Inconsistency doesn't prevent us reasoning about some system [Mares]
     Full Idea: We are able to reason about inconsistent beliefs, stories, and theories in useful and important ways
     From: Edwin D. Mares (Negation [2014], 1)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionism as natural deduction has no rule for negation [Mares]
     Full Idea: In intuitionist logic each connective has one introduction and one elimination rule attached to it, but in the classical system we have to add an extra rule for negation.
     From: Edwin D. Mares (Negation [2014], 5.5)
     A reaction: How very intriguing. Mares says there are other ways to achieve classical logic, but they all seem rather cumbersome.
Intuitionist logic looks best as natural deduction [Mares]
     Full Idea: Intuitionist logic appears most attractive in the form of a natural deduction system.
     From: Edwin D. Mares (Negation [2014], 5.5)
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic is useful for a theory of presupposition [Mares]
     Full Idea: One reason for wanting a three-valued logic is to act as a basis of a theory of presupposition.
     From: Edwin D. Mares (Negation [2014], 3.1)
     A reaction: [He cites Strawson 1950] The point is that you can get a result when the presupposition does not apply, as in talk of the 'present King of France'.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is something, not nothing! [Oliver/Smiley]
     Full Idea: Some authors need to be told loud and clear: if there is an empty set, it is something, not nothing.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: I'm inclined to think of a null set as a pair of brackets, so maybe that puts it into a metalanguage.
We don't need the empty set to express non-existence, as there are other ways to do that [Oliver/Smiley]
     Full Idea: The empty set is said to be useful to express non-existence, but saying 'there are no Us', or ¬∃xUx are no less concise, and certainly less roundabout.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
The empty set is usually derived from Separation, but it also seems to need Infinity [Oliver/Smiley]
     Full Idea: The empty set is usually derived via Zermelo's axiom of separation. But the axiom of separation is conditional: it requires the existence of a set in order to generate others as subsets of it. The original set has to come from the axiom of infinity.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: They charge that this leads to circularity, as Infinity depends on the empty set.
Maybe we can treat the empty set symbol as just meaning an empty term [Oliver/Smiley]
     Full Idea: Suppose we introduce Ω not as a term standing for a supposed empty set, but as a paradigm of an empty term, not standing for anything.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: This proposal, which they go on to explore, seems to mean that Ω (i.e. the traditional empty set symbol) is no longer part of set theory but is part of semantics.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The unit set may be needed to express intersections that leave a single member [Oliver/Smiley]
     Full Idea: Thomason says with no unit sets we couldn't call {1,2}∩{2,3} a set - but so what? Why shouldn't the intersection be the number 2? However, we then have to distinguish three different cases of intersection (common subset or member, or disjoint).
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 2.2)
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Material implication (and classical logic) considers nothing but truth values for implications [Mares]
     Full Idea: The problem with material implication, and classical logic more generally, is that it considers only the truth value of formulas in deciding whether to make an implication stand between them. It ignores everything else.
     From: Edwin D. Mares (Negation [2014], 7.1)
     A reaction: The obvious problem case is conditionals, and relevance is an obvious extra principle that comes to mind.
In classical logic the connectives can be related elegantly, as in De Morgan's laws [Mares]
     Full Idea: Among the virtues of classical logic is the fact that the connectives are related to one another in elegant ways that often involved negation. For example, De Morgan's Laws, which involve negation, disjunction and conjunction.
     From: Edwin D. Mares (Negation [2014], 2.2)
     A reaction: Mares says these enable us to take disjunction or conjunction as primitive, and then define one in terms of the other, using negation as the tool.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Excluded middle standardly implies bivalence; attacks use non-contradiction, De M 3, or double negation [Mares]
     Full Idea: On its standard reading, excluded middle tells us that bivalence holds. To reject excluded middle, we must reject either non-contradiction, or ¬(A∧B) ↔ (¬A∨¬B) [De Morgan 3], or the principle of double negation. All have been tried.
     From: Edwin D. Mares (Negation [2014], 2.2)
Standard disjunction and negation force us to accept the principle of bivalence [Mares]
     Full Idea: If we treat disjunction in the standard way and take the negation of a statement A to mean that A is false, accepting excluded middle forces us also to accept the principle of bivalence, which is the dictum that every statement is either true or false.
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: Mates's point is to show that passively taking the normal account of negation for granted has important implications.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The connectives are studied either through model theory or through proof theory [Mares]
     Full Idea: In studying the logical connectives, philosophers of logic typically adopt the perspective of either model theory (givng truth conditions of various parts of the language), or of proof theory (where use in a proof system gives the connective's meaning).
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: [compressed] The commonest proof theory is natural deduction, giving rules for introduction and elimination. Mates suggests moving between the two views is illuminating.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
If you only refer to objects one at a time, you need sets in order to refer to a plurality [Oliver/Smiley]
     Full Idea: A 'singularist', who refers to objects one at a time, must resort to the language of sets in order to replace plural reference to members ('Henry VIII's wives') by singular reference to a set ('the set of Henry VIII's wives').
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: A simple and illuminating point about the motivation for plural reference. Null sets and singletons give me the creeps, so I would personally prefer to avoid set theory when dealing with ontology.
We can use plural language to refer to the set theory domain, to avoid calling it a 'set' [Oliver/Smiley]
     Full Idea: Plurals earn their keep in set theory, to answer Skolem's remark that 'in order to treat of 'sets', we must begin with 'domains' that are constituted in a certain way'. We can speak in the plural of 'the objects', not a 'domain' of objects.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: [Skolem 1922:291 in van Heijenoort] Zermelo has said that the domain cannot be a set, because every set belongs to it.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Many-valued logics lack a natural deduction system [Mares]
     Full Idea: Many-valued logics do not have reasonable natural deduction systems.
     From: Edwin D. Mares (Negation [2014], 1)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Situation semantics for logics: not possible worlds, but information in situations [Mares]
     Full Idea: Situation semantics for logics consider not what is true in worlds, but what information is contained in situations.
     From: Edwin D. Mares (Negation [2014], 6.2)
     A reaction: Since many theoretical physicists seem to think that 'information' might be the most basic concept of a natural ontology, this proposal is obviously rather appealing. Barwise and Perry are the authors of the theory.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are true no matter what exists - but predicate calculus insists that something exists [Oliver/Smiley]
     Full Idea: Logical truths should be true no matter what exists, so true even if nothing exists. The classical predicate calculus, however, makes it logically true that something exists.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is semantic, but non-contradiction is syntactic [Mares]
     Full Idea: The difference between the principle of consistency and the principle of non-contradiction is that the former must be stated in a semantic metalanguage, whereas the latter is a thesis of logical systems.
     From: Edwin D. Mares (Negation [2014], 2.2)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Parsons says counting is tagging as first, second, third..., and converting the last to a cardinal [Parsons,C, by Heck]
     Full Idea: In Parsons's demonstrative model of counting, '1' means the first, and counting says 'the first, the second, the third', where one is supposed to 'tag' each object exactly once, and report how many by converting the last ordinal into a cardinal.
     From: report of Charles Parsons (Frege's Theory of Numbers [1965]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 3
     A reaction: This sounds good. Counting seems to rely on that fact that numbers can be both ordinals and cardinals. You don't 'convert' at the end, though, because all the way you mean 'this cardinality in this order'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
If mathematics purely concerned mathematical objects, there would be no applied mathematics [Oliver/Smiley]
     Full Idea: If mathematics was purely concerned with mathematical objects, there would be no room for applied mathematics.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
     A reaction: Love it! Of course, they are using 'objects' in the rather Fregean sense of genuine abstract entities. I don't see why fictionalism shouldn't allow maths to be wholly 'pure', although we have invented fictions which actually have application.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Sets might either represent the numbers, or be the numbers, or replace the numbers [Oliver/Smiley]
     Full Idea: Identifying numbers with sets may mean one of three quite different things: 1) the sets represent the numbers, or ii) they are the numbers, or iii) they replace the numbers.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.2)
     A reaction: Option one sounds the most plausible to me. I will take numbers to be patterns embedded in nature, and sets are one way of presenting them in shorthand form, in order to bring out what is repeated.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
For intuitionists there are not numbers and sets, but processes of counting and collecting [Mares]
     Full Idea: For the intuitionist, talk of mathematical objects is rather misleading. For them, there really isn't anything that we should call the natural numbers, but instead there is counting. What intuitionists study are processes, such as counting and collecting.
     From: Edwin D. Mares (Negation [2014], 5.1)
     A reaction: That is the first time I have seen mathematical intuitionism described in a way that made it seem attractive. One might compare it to a metaphysics based on processes. Apparently intuitionists struggle with infinite sets and real numbers.
19. Language / C. Assigning Meanings / 2. Semantics
In 'situation semantics' our main concepts are abstracted from situations [Mares]
     Full Idea: In 'situation semantics' individuals, properties, facts, and events are treated as abstractions from situations.
     From: Edwin D. Mares (Negation [2014], 6.1)
     A reaction: [Barwise and Perry 1983 are cited] Since I take the process of abstraction to be basic to thought, I am delighted to learn that someone has developed a formal theory based on it. I am immediately sympathetic to situation semantics.