Combining Texts

All the ideas for 'Concerning the Author', 'Introduction to Mathematical Philosophy' and 'The Elm and the Expert'

unexpand these ideas     |    start again     |     specify just one area for these texts


89 ideas

1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
The demonstrations of the metaphysicians are all moonshine [Peirce]
     Full Idea: The demonstrations of the metaphysicians are all moonshine.
     From: Charles Sanders Peirce (Concerning the Author [1897], p.2)
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
'Socrates is human' expresses predication, and 'Socrates is a man' expresses identity [Russell]
     Full Idea: The is of 'Socrates is human' expresses the relation of subject and predicate; the is of 'Socrates is a man' expresses identity. It is a disgrace to the human race that it employs the same word 'is' for these entirely different ideas.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: Does the second one express identity? It sounds more like membership to me. 'Socrates is the guy with the hemlock' is more like identity.
1. Philosophy / G. Scientific Philosophy / 3. Scientism
I am saturated with the spirit of physical science [Peirce]
     Full Idea: I am saturated, through and through, with the spirit of the physical sciences.
     From: Charles Sanders Peirce (Concerning the Author [1897], p.1)
2. Reason / A. Nature of Reason / 8. Naturalising Reason
A standard naturalist view is realist, externalist, and computationalist, and believes in rationality [Fodor]
     Full Idea: There seems to be an emerging naturalist consensus that is Realist in ontology and epistemology, externalist in semantics, and computationalist in cognitive psychology, which nicely allows us to retain our understanding of ourselves as rational creatures.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
2. Reason / D. Definition / 3. Types of Definition
A definition by 'extension' enumerates items, and one by 'intension' gives a defining property [Russell]
     Full Idea: The definition of a class or collection which enumerates is called a definition by 'extension', and one which mentions a defining property is called a definition by 'intension'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: In ordinary usage we take intensional definitions for granted, so it is interesting to realise that you might define 'tiger' by just enumerating all the tigers. But all past tigers? All future tigers? All possible tigers which never exist?
2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
The sentence 'procrastination drinks quadruplicity' is meaningless, rather than false [Russell, by Orenstein]
     Full Idea: Russell proposed (in his theory of types) that sentences like 'The number two is fond of cream cheese' or 'Procrastination drinks quadruplicity' should be regarded as not false but meaningless.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: This seems to be the origin of the notion of a 'category mistake', which Ryle made famous. The problem is always poetry, where abstractions can be reified, or personified, and meaning can be squeezed out of almost anything.
3. Truth / A. Truth Problems / 5. Truth Bearers
Psychology has to include the idea that mental processes are typically truth-preserving [Fodor]
     Full Idea: A psychology that can't make sense of such facts as that mental processes are typically truth-preserving is ipso facto dead in the water.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.3)
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
An argument 'satisfies' a function φx if φa is true [Russell]
     Full Idea: We say that an argument a 'satisfies' a function φx if φa is true.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: We end up with Tarski defining truth in terms of satisfaction, so we shouldn't get too excited about what he achieved (any more than he got excited).
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
     Full Idea: Some moods of the syllogism are fallacious, e.g. 'Darapti': 'All M is S, all M is P, therefore some S is P', which fails if there is no M.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: This critique rests on the fact that the existential quantifier entails some existence, but the universal quantifier does not.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
     Full Idea: We know a great deal about a class without enumerating its members …so definition by extension is not necessary to knowledge about a class ..but enumeration of infinite classes is impossible for finite beings, so definition must be by intension.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Presumably mathematical induction (which keeps apply the rule to extend the class) will count as an intension here.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
     Full Idea: There is only one class having a given set of members, whereas there are always many different characteristics by which a given class may be defined.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
     Full Idea: The Axiom of Infinity may be enunciated as 'If n be any inductive cardinal number, there is at least one class of individuals having n terms'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIII)
     A reaction: So for every possible there exists a set of terms for it. Notice that they are 'terms', not 'objects'. We must decide whether we are allowed terms which don't refer to real objects.
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
     Full Idea: There is no logical reason against infinite collections, and we are therefore justified, in logic, in investigating the hypothesis that there are such collections.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VIII)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
     Full Idea: We have a class of representatives, who make up our Parliament, one being selected out of each constituency.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: You can rely on Russell for the clearest illustrations of these abstract ideas. He calls the Axiom of Choice the 'Multiplicative' Axiom.
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
     Full Idea: The [Axiom of Choice] is also equivalent to the assumption that of any two cardinals which are not equal, one must be the greater.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: It is illuminating for the uninitiated to learn that this result can't be taken for granted (with infinite cardinals).
Choice is equivalent to the proposition that every class is well-ordered [Russell]
     Full Idea: Zermelo has shown that [the Axiom of Choice] is equivalent to the proposition that every class is well-ordered, i.e. can be arranged in a series in which every sub-class has a first term (except, of course, the null class).
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: Russell calls Choice the 'Multiplicative' Axiom.
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
     Full Idea: Among boots we distinguish left and right, so we can choose all the right or left boots; with socks no such principle suggests itself, and we cannot be sure, without the [Axiom of Choice], that there is a class consisting of one sock from each pair.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: A deservedly famous illustration of a rather tricky part of set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: a family of functions is equivalent to a single type of function [Russell]
     Full Idea: The Axiom of Reducibility says 'There is a type of a-functions such that, given any a-function, it is formally equivalent to some function of the type in question'. ..It involves all that is really essential in the theory of classes. But is it true?
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: I take this to say that in the theory of types, it is possible to reduce each level of type down to one type.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Propositions about classes can be reduced to propositions about their defining functions [Russell]
     Full Idea: It is right (in its main lines) to say that there is a reduction of propositions nominally about classes to propositions about their defining functions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: The defining functions will involve the theory of types, in order to avoid the paradoxes of naïve set theory. This is Russell's strategy for rejecting the existence of sets.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
     Full Idea: Russell's solution (in the theory of types) consists of restricting the principle that every predicate has a set as its extension so that only meaningful predicates have sets as their extensions.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: There might be a chicken-and-egg problem here. How do you decide the members of a set (apart from ostensively) without deciding the predicate(s) that combine them?
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
     Full Idea: The symbols for classes are mere conveniences, not representing objects called 'classes'. Classes are in fact logical fictions; they cannot be regarded as part of the ultimate furniture of the world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Ch.18), quoted by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: I agree. For 'logical fictions' read 'abstractions'. To equate abstractions with fictions is to underline the fact that they are a human creation. They are either that or platonic objects - there is no middle way.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
All the propositions of logic are completely general [Russell]
     Full Idea: It is part of the definition of logic that all its propositions are completely general.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
Inferences are surely part of the causal structure of the world [Fodor]
     Full Idea: Inferences are surely part of the causal structure of the world.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §3)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
In modern times, logic has become mathematical, and mathematics has become logical [Russell]
     Full Idea: Logic has become more mathematical, and mathematics has become more logical. The consequence is that it has now become wholly impossible to draw a line between the two; in fact, the two are one.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This appears to be true even if you reject logicism about mathematics. Logicism is sometimes rejected because it always ends up with a sneaky ontological commitment, but maybe mathematics shares exactly the same commitment.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic can only assert hypothetical existence [Russell]
     Full Idea: No proposition of logic can assert 'existence' except under a hypothesis.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: I am prepared to accept this view fairly dogmatically, though Musgrave shows some of the difficulties of the if-thenist view (depending on which 'order' of logic is being used).
Logic is concerned with the real world just as truly as zoology [Russell]
     Full Idea: Logic is concerned with the real world just as truly as zoology, though with its more abstract and general features.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: I love this idea and am very sympathetic to it. The rival view seems to be that logic is purely conventional, perhaps defined by truth tables etc. It is hard to see how a connective like 'tonk' could be self-evidently silly if it wasn't 'unnatural'.
Logic can be known a priori, without study of the actual world [Russell]
     Full Idea: Logical propositions are such as can be known a priori, without study of the actual world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This remark constrasts strikingly with Idea 12444, which connects logic to the actual world. Is it therefore a priori synthetic?
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Asking 'Did Homer exist?' is employing an abbreviated description [Russell]
     Full Idea: When we ask whether Homer existed, we are using the word 'Homer' as an abbreviated description.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: It is hard to disagree with Russell over this rather unusual example. It doesn't seem so plausible when Ottiline refers to 'Bertie'.
Russell admitted that even names could also be used as descriptions [Russell, by Bach]
     Full Idea: Russell clearly anticipated Donnellan when he said proper names can also be used as descriptions, adding that 'there is nothing in the phraseology to show whether they are being used in this way or as names'.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919], p.175) by Kent Bach - What Does It Take to Refer? 22.2 L1
     A reaction: This seems also to anticipate Strawson's flexible and pragmatic approach to these things, which I am beginning to think is correct.
Names are really descriptions, except for a few words like 'this' and 'that' [Russell]
     Full Idea: We can even say that, in all such knowledge as can be expressed in words, with the exception of 'this' and 'that' and a few other words of which the meaning varies on different occasions - no names occur, but what seem like names are really descriptions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: I like the caveat about what is expressed in words. Russell is very good at keeping non-verbal thought in the picture. This is his famous final reduction of names to simple demonstratives.
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
The only genuine proper names are 'this' and 'that' [Russell]
     Full Idea: In all knowledge that can be expressed in words - with the exception of "this" and "that", and a few other such words - no genuine proper names occur, but what seem like genuine proper names are really descriptions
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: This is the terminus of Russell's train of thought about descriptions. Suppose you point to something non-existent, like a ghost in a misty churchyard? You'd be back to the original problem of naming a non-existent!
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
'I met a unicorn' is meaningful, and so is 'unicorn', but 'a unicorn' is not [Russell]
     Full Idea: In 'I met a unicorn' the four words together make a significant proposition, and the word 'unicorn' is significant, …but the two words 'a unicorn' do not form a group having a meaning of its own. It is an indefinite description describing nothing.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If straight lines were like ratios they might intersect at a 'gap', and have no point in common [Russell]
     Full Idea: We wish to say that when two straight lines cross each other they have a point in common, but if the series of points on a line were similar to the series of ratios, the two lines might cross in a 'gap' and have no point in common.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], X)
     A reaction: You can make a Dedekind Cut in the line of ratios (the rationals), so there must be gaps. I love this idea. We take for granted intersection at a point, but physical lines may not coincide. That abstract lines might fail also is lovely!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
     Full Idea: Every generalisation of number has presented itself as needed for some simple problem. Negative numbers are needed to make subtraction always possible; fractions to make division always possible; complex numbers to make solutions of equations possible.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
     A reaction: Doesn't this rather suggest that we made them up? If new problems turn up, we'll invent another lot. We already have added 'surreal' numbers.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
     Full Idea: Russell toyed with the idea that there is nothing to being a natural number beyond occurring in a progression
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919], p.8) by William D. Hart - The Evolution of Logic 5
     A reaction: How could you define a progression, without a prior access to numbers? - Arrange all the objects in the universe in ascending order of mass. Use scales to make the selection. Hence a finite progression, with no numbers!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A series can be 'Cut' in two, where the lower class has no maximum, the upper no minimum [Russell]
     Full Idea: There is no maximum to the ratios whose square is less than 2, and no minimum to those whose square is greater than 2. This division of a series into two classes is called a 'Dedekind Cut'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
A complex number is simply an ordered couple of real numbers [Russell]
     Full Idea: A complex number may be regarded and defined as simply an ordered couple of real numbers
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
Discovering that 1 is a number was difficult [Russell]
     Full Idea: The discovery that 1 is a number must have been difficult.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Interesting that he calls it a 'discovery'. I am tempted to call it a 'decision'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
     Full Idea: We want our numbers to be such as can be used for counting common objects, and this requires that our numbers should have a definite meaning, not merely that they should have certain formal properties.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Why would just having certain formal properties be insufficient for counting? You just need an ordered series of unique items. It isn't just that we 'want' this. If you define something that we can't count with, you haven't defined numbers.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
     Full Idea: The usual formal laws of arithmetic are the Commutative Law [a+b=b+a and axb=bxa], the Associative Law [(a+b)+c=a+(b+c) and (axb)xc=ax(bxc)], and the Distributive Law [a(b+c)=ab+ac)].
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IX)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinity and continuity used to be philosophy, but are now mathematics [Russell]
     Full Idea: The nature of infinity and continuity belonged in former days to philosophy, but belongs now to mathematics.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Pref)
     A reaction: It is hard to disagree, since mathematicians since Cantor have revealed so much about infinite numbers (through set theory), but I think it remains an open question whether philosophers have anything distinctive to contribute.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
     Full Idea: Order must be defined by means of a transitive relation, since only such a relation is able to leap over an infinite number of intermediate terms. ...Without it we would not be able to define the order of magnitude among fractions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IV)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
     Full Idea: Given any series which is endless, contains no repetitions, has a beginning, and has no terms that cannot be reached from the beginning in a finite number of steps, we have a set of terms verifying Peano's axioms.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
     Full Idea: That '0', 'number' and 'successor' cannot be defined by means of Peano's five axioms, but must be independently understood.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
     Full Idea: The number 3 is something which all trios have in common, and which distinguishes them from other collections. A number is something that characterises certain collections, namely, those that have that number.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: This is a verbal summary of the Fregean view of numbers, which marks the arrival of set theory as the way arithmetic will in future be characterised. The question is whether set theory captures all aspects of numbers. Does it give a tool for counting?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
     Full Idea: What matters in mathematics is not the intrinsic nature of our terms, but the logical nature of their interrelations.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: If they have an instrinsic nature, that would matter far more, because that would dictate the interrelations. Structuralism seems to require that they don't actually have any intrinsic nature.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
     Full Idea: 'Ten men' is grammatically the same form as 'white men', so that 10 might be thought to be an adjective qualifying 'men'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: The immediate problem, as Frege spotted, is that such expressions can be rephrased to remove the adjective (by saying 'the number of men is ten').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
     Full Idea: Russell's own stand was that numbers are really only sets of equivalent sets.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Paul Benacerraf - Logicism, Some Considerations (PhD) p.168
     A reaction: Benacerraf is launching a nice attack on this view, based on our inability to grasp huge numbers on this basis, or to see their natural order.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
     Full Idea: There is always unavoidably something psychological about inference.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Glad to find Russell saying that. Only pure Fregeans dream of a logic that rises totally above the minds that think it. See Robert Hanna on the subject.
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence can only be asserted of something described, not of something named [Russell]
     Full Idea: Existence can only be asserted of something described, not of something named.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This is the motivation behind Russell's theory of definite descriptions, and epitomises the approach to ontology through language. Sounds wrong to me!
7. Existence / D. Theories of Reality / 7. Fictionalism
Classes are logical fictions, made from defining characteristics [Russell]
     Full Idea: Classes may be regarded as logical fictions, manufactured out of defining characteristics.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II n1)
     A reaction: I agree with this. The idea that in addition to the members there is a further object, the set containing them, is absurd. Sets are a tool for thinking about the world.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
If a relation is symmetrical and transitive, it has to be reflexive [Russell]
     Full Idea: It is obvious that a relation which is symmetrical and transitive must be reflexive throughout its domain.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Compare Idea 13543! The relation will return to its originator via its neighbours, rather than being directly reflexive?
'Asymmetry' is incompatible with its converse; a is husband of b, so b can't be husband of a [Russell]
     Full Idea: The relation of 'asymmetry' is incompatible with the converse. …The relation 'husband' is asymmetrical, so that if a is the husband of b, b cannot be the husband of a.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], V)
     A reaction: This is to be contrasted with 'non-symmetrical', where there just happens to be no symmetry.
9. Objects / D. Essence of Objects / 3. Individual Essences
The essence of individuality is beyond description, and hence irrelevant to science [Russell]
     Full Idea: The essence of individuality always eludes words and baffles description, and is for that very reason irrelevant to science.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: [context needed for a full grasp of this idea] Russell seems to refer to essence as much as to individuality. The modern essentialist view is that essences are not beyond description after all. Fundamental physics is clearer now than in 1919.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Inferring q from p only needs p to be true, and 'not-p or q' to be true [Russell]
     Full Idea: In order that it be valid to infer q from p, it is only necessary that p should be true and that the proposition 'not-p or q' should be true.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Rumfitt points out that this approach to logical consequences is a denial of any modal aspect, such as 'logical necessity'. Russell observes that for a good inference you must know the disjunction as a whole. Could disjunction be modal?...
All forms of implication are expressible as truth-functions [Russell]
     Full Idea: There is no need to admit as a fundamental notion any form of implication not expressible as a truth-function.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Note that this is from a book about 'mathematical' philosophy. Nevertheless, it seems to have the form of a universal credo for Russell. He wasn't talking about conditionals here. Maybe conditionals are not implications (in isolation, that is).
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
If something is true in all possible worlds then it is logically necessary [Russell]
     Full Idea: Saying that the axiom of reducibility is logically necessary is what would be meant by saying that it is true in all possible worlds.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: This striking remark is a nice bridge between Leibniz (about whom Russell wrote a book) and Kripke.
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
Infallibility in science is just a joke [Peirce]
     Full Idea: Infallibility in scientific matters seems to me irresistibly comical.
     From: Charles Sanders Peirce (Concerning the Author [1897], p.3)
12. Knowledge Sources / D. Empiricism / 2. Associationism
Association of ideas is the best philosophical idea of the prescientific age [Peirce]
     Full Idea: The doctrine of the association of ideas is, to my thinking, the finest piece of philosophical work of the prescientific ages.
     From: Charles Sanders Peirce (Concerning the Author [1897], p.2)
13. Knowledge Criteria / C. External Justification / 5. Controlling Beliefs
Control of belief is possible if you know truth conditions and what causes beliefs [Fodor]
     Full Idea: Premeditated cognitive management is possible if knowing the contents of one's thoughts would tell you what would make them true and what would cause you to have them.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I love the idea of 'cognitive management'. Since belief is fairly involuntary, I subject myself to the newspapers, books, TV and conversation which will create the style of beliefs to which I aspire. Why?
14. Science / A. Basis of Science / 3. Experiment
Participation in an experiment requires agreement about what the outcome will mean [Fodor]
     Full Idea: To be in the audience for an experiment you have to believe what the experimenter believes about what the outcome would mean, but not necessarily what the outcome will be.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
An experiment is a deliberate version of what informal thinking does all the time [Fodor]
     Full Idea: Experimentation is an occasional and more or less self-conscious exercise in what informal thinking does all the time without thinking about it.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
We can deliberately cause ourselves to have true thoughts - hence the value of experiments [Fodor]
     Full Idea: A creature that knows what makes its thoughts true and what would cause it to have them, could therefore cause itself to have true thoughts. …This would explain why experimentation is so close to the heart of our cognitive style.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
Interrogation and experiment submit us to having beliefs caused [Fodor]
     Full Idea: You can put yourself into a situation where you may be caused to believe that P. Putting a question to someone who is in the know is one species of this behaviour, and putting a question to Nature (an experiment) is another.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
14. Science / B. Scientific Theories / 1. Scientific Theory
Duns Scotus offers perhaps the best logic and metaphysics for modern physical science [Peirce]
     Full Idea: The works of Duns Scotus have strongly influenced me. …His logic and metaphysics, torn away from its medievalism, …will go far toward supplying the philosophy which is best to harmonize with physical science.
     From: Charles Sanders Peirce (Concerning the Author [1897], p.2)
Mathematically expressed propositions are true of the world, but how to interpret them? [Russell]
     Full Idea: We know that certain scientific propositions - often expressed in mathematical symbols - are more or less true of the world, but we are very much at sea as to the interpretation to be put upon the terms which occur in these propositions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: Enter essentialism, say I! Russell's remark is pretty understandable in 1919, but I don't think the situation has changed much. The problem of interpretation may be of more interest to philosophers than to physicists.
Theories are links in the causal chain between the environment and our beliefs [Fodor]
     Full Idea: Theories function as links in the causal chains that run from environmental outcomes to the beliefs that they cause the inquirer to have.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
15. Nature of Minds / A. Nature of Mind / 1. Mind / e. Questions about mind
I say psychology is intentional, semantics is informational, and thinking is computation [Fodor]
     Full Idea: I hold that psychological laws are intentional, that semantics is purely informational, and that thinking is computation (and that it is possible to hold all of these assumptions at once).
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: When he puts it baldly like that, it doesn't sound terribly persuasive. Thinking is 'computation'? Raw experience is irrelevant? What is it 'like' to spot an interesting connection between two propositions or concepts? It's not like adding 7 and 5.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / f. Higher-order thought
We are probably the only creatures that can think about our own thoughts [Fodor]
     Full Idea: I think it is likely that we are the only creatures that can think about the contents of our thoughts.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I think this is a major idea. If you ask me the traditional question - what is the essential difference between us and other animals? - this is my answer (not language, or reason). We are the metathinkers.
17. Mind and Body / A. Mind-Body Dualism / 2. Interactionism
Cartesians consider interaction to be a miracle [Fodor]
     Full Idea: The Cartesian view is that the interaction problem does arise, but is unsolvable because interaction is miraculous.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: A rather unsympathetic statement of the position. Cartesians might think that God could explain to us how interaction works. Cartesians are not mysterians, I think, but they see no sign of any theory of interaction.
Semantics v syntax is the interaction problem all over again [Fodor]
     Full Idea: The question how mental representations could be both semantic, like propositions, and causal, like rocks, trees, and neural firings, is arguably just the interaction problem all over again.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: Interesting way of presenting the problem. If you seem to be confronting the interaction problem, you have probably drifted into a bogus dualist way of thinking. Retreat, and reformulate you questions and conceptual apparatus, till the question vanishes.
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Type physicalism equates mental kinds with physical kinds [Fodor]
     Full Idea: Type physicalism is, roughly, the doctrine that psychological kinds are identical to neurological kinds.
     From: Jerry A. Fodor (The Elm and the Expert [1993], App A n.1)
     A reaction: This gets my general support, leaving open the nature of 'kinds'. Presumably the identity is strict, as in 'Hesperus is identical to Phosphorus'. It seems unlikely that if you and I think the 'same' thought, that we have strictly identical brain states.
17. Mind and Body / E. Mind as Physical / 4. Connectionism
Hume has no theory of the co-ordination of the mind [Fodor]
     Full Idea: What Hume didn't see was that the causal and representational properties of mental symbols have somehow to be coordinated if the coherence of mental life is to be accounted for.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: Certainly the idea that it all somehow becomes magic at the point where the brain represents the world is incoherent - but it is a bit magical. How can the whole of my garden be in my brain? Weird.
18. Thought / A. Modes of Thought / 2. Propositional Attitudes
Propositional attitudes are propositions presented in a certain way [Fodor]
     Full Idea: Propositional attitudes are really three-place relations, between a creature, a proposition, and a mode of presentation (which are sentences of Mentalese).
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.II)
     A reaction: I'm not sure about 'really'! Why do we need a creature? Isn't 'hoping it will rain' a propositional attitude which some creature may or may not have? Fodor wants it to be physical, but it's abstract?
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
Rationality has mental properties - autonomy, productivity, experiment [Fodor]
     Full Idea: Mentalism isn't gratuitous; you need it to explain rationality. Mental causation buys you behaviours that are unlike reflexes in at least three ways: they're autonomous, they're productive, and they're experimental.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: He makes his three ways sound all-or-nothing, which is (I believe) the single biggest danger when thinking about the mind. "Either you are conscious, or you are not..."
18. Thought / C. Content / 5. Twin Earth
XYZ (Twin Earth 'water') is an impossibility [Fodor]
     Full Idea: There isn't any XYZ, and there couldn't be any, and so we don't have to worry about it.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.I)
     A reaction: Jadeite and Nephrite are real enough, which are virtually indistinguishable variants of jade. You just need Twin Jewellers instead of Twin Earths. We could build them, and employ twins to work there.
18. Thought / C. Content / 6. Broad Content
Truth conditions require a broad concept of content [Fodor]
     Full Idea: We need the idea of broad content to make sense of the fact that thoughts have the truth-conditions that they do.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.II)
     A reaction: There seems to be (as Dummett points out) a potential circularity here, as you can hardly know the truth-conditions of something if you don't already know its content.
18. Thought / C. Content / 7. Narrow Content
Concepts aren't linked to stuff; they are what is caused by stuff [Fodor]
     Full Idea: If the words of 'Swamp Man' (spontaneously created, with concepts) are about XYZ on Twin Earth, it is not because he's causally connected to the stuff, but because XYZ would cause his 'water' tokens (in the absence of H2O).
     From: Jerry A. Fodor (The Elm and the Expert [1993], App B)
     A reaction: The sight of the Eiffel tower causes my 'France' tokens, so is my word "France" about the Eiffel Tower? What would cause my 'nothing' tokens?
18. Thought / C. Content / 10. Causal Semantics
Knowing the cause of a thought is almost knowing its content [Fodor]
     Full Idea: If you know the content of a thought, you know quite a lot about what would cause you to have it.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I'm not sure where this fits into the great jigsaw of the mind, but it strikes me as an acute and important observation. The truth of a thought is not essential to make you have it. Ask Othello.
18. Thought / C. Content / 12. Informational Semantics
Is content basically information, fixed externally? [Fodor]
     Full Idea: I assume intentional content reduces (in some way) to information. …The content of a thought depends on its external relations; on the way that the thought is related to the world, not the way that it is related to other thoughts.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.2)
     A reaction: Does this make Fodor a 'weak' functionalist? The 'strong' version would say a thought is merely a location in a flow diagram, but Fodor's 'mentalism' includes a further 'content' in each diagram box.
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
In the information view, concepts are potentials for making distinctions [Fodor]
     Full Idea: Semantics, according to the informational view, is mostly about counterfactuals; what counts for the identity of my concepts is not what I do distinguish but what I could distinguish if I cared to (even using instruments and experts).
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.I)
     A reaction: We all differ in our discriminations (and awareness of expertise), so our concepts would differ, which is bad news for communication (see Idea 223). The view has some plausibility, though.
19. Language / A. Nature of Meaning / 1. Meaning
Semantic externalism says the concept 'elm' needs no further beliefs or inferences [Fodor]
     Full Idea: It is the essence of semantic externalism that there is nothing that you have to believe, there are no inferences that you have to accept, to have the concept 'elm'.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.I)
     A reaction: [REMINDER: broad content is filed in 18.C.7, under 'Thought' rather than under language. That is because I am a philospher of thought, rather than of language.
If meaning is information, that establishes the causal link between the state of the world and our beliefs [Fodor]
     Full Idea: It is the causal connection between the state of the world and the contents of beliefs that the reduction of meaning to information is designed to insure.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I'm not clear why characterising the contents of a belief in terms of its information has to amount to a 'reduction'. A cup of tea isn't reduced to tea. Connections imply duality.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
To know the content of a thought is to know what would make it true [Fodor]
     Full Idea: If you know the content of a thought, you thereby know what would make the thought true.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: The truthmaker might by physically impossible, and careful thought might show it to be contradictory - but that wouldn't destroy the meaning.
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
For holists no two thoughts are ever quite the same, which destroys faith in meaning [Fodor]
     Full Idea: If what you are thinking depends on all of what you believe, then nobody ever thinks the same thing twice. …That is why so many semantic holists (Quine, Putnam, Rorty, Churchland, probably Wittgenstein) end up being semantic eliminativists.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.2b)
     A reaction: If linguistic holism is nonsense, this is easily settled. What I say about breakfast is not changed by reading some Gibbon yesterday.
19. Language / B. Reference / 4. Descriptive Reference / a. Sense and reference
It is claimed that reference doesn't fix sense (Jocasta), and sense doesn't fix reference (Twin Earth) [Fodor]
     Full Idea: The standard view is that Frege cases [knowing Jocasta but not mother] show that reference doesn't determine sense, and Twin cases [knowing water but not H2O] show that sense doesn't determine reference.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.3)
     A reaction: How about 'references don't contain much information', and 'descriptions may not fix what they are referring to'? Simple really.
19. Language / C. Assigning Meanings / 2. Semantics
Broad semantics holds that the basic semantic properties are truth and denotation [Fodor]
     Full Idea: Broad semantic theories generally hold that the basic semantic properties of thoughts are truth and denotation.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.2b)
     A reaction: I think truth and denotation are the basic semantic properties, but I am dubious about whole-hearted broad semantic theories, so I seem to have gone horribly wrong somewhere.
19. Language / C. Assigning Meanings / 6. Truth-Conditions Semantics
Externalist semantics are necessary to connect the contents of beliefs with how the world is [Fodor]
     Full Idea: You need an externalist semantics to explain why the contents of beliefs should have anything to do with how the world is.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: Since externalist semantics only emerged in the 1970s, that implies that no previous theory had any notion that language had some connection to how the world is. Eh?
19. Language / D. Propositions / 1. Propositions
Propositions are mainly verbal expressions of true or false, and perhaps also symbolic thoughts [Russell]
     Full Idea: We mean by 'proposition' primarily a form of words which expresses what is either true or false. I say 'primarily' because I do not wish to exclude other than verbal symbols, or even mere thoughts if they have a symbolic character.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: I like the last bit, as I think of propositions as pre-verbal thoughts, and I am sympathetic to Fodor's 'language of thought' thesis, that there is a system of representations within the brain.