Combining Texts

All the ideas for 'Issues of Pragmaticism', 'Logicism and Ontological Commits. of Arithmetic' and 'Intuitionism and Formalism'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
Truth in a model is more tractable than the general notion of truth [Hodes]
     Full Idea: Truth in a model is interesting because it provides a transparent and mathematically tractable model - in the 'ordinary' rather than formal sense of the term 'model' - of the less tractable notion of truth.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This is an important warning to those who wish to build their entire account of truth on Tarski's rigorously formal account of the term. Personally I think we should start by deciding whether 'true' can refer to the mental state of a dog. I say it can.
Truth is quite different in interpreted set theory and in the skeleton of its language [Hodes]
     Full Idea: There is an enormous difference between the truth of sentences in the interpreted language of set theory and truth in some model for the disinterpreted skeleton of that language.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.132)
     A reaction: This is a warning to me, because I thought truth and semantics only entered theories at the stage of 'interpretation'. I must go back and get the hang of 'skeletal' truth, which sounds rather charming. [He refers to set theory, not to logic.]
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
Our dislike of contradiction in logic is a matter of psychology, not mathematics [Brouwer]
     Full Idea: Not to the mathematician, but to the psychologist, belongs the task of explaining why ...we are averse to so-called contradictory systems in which the negative as well as the positive of certain propositions are valid.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.79)
     A reaction: Was the turning point of Graham Priest's life the day he read this sentence? I don't agree. I take the principle of non-contradiction to be a highly generalised observation of how the world works (and Russell agrees with me).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Higher-order logic may be unintelligible, but it isn't set theory [Hodes]
     Full Idea: Brand higher-order logic as unintelligible if you will, but don't conflate it with set theory.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: [he gives Boolos 1975 as a further reference] This is simply a corrective, because the conflation of second-order logic with set theory is an idea floating around in the literature.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is a level one relation with a second-order definition [Hodes]
     Full Idea: Identity should he considered a logical notion only because it is the tip of a second-order iceberg - a level 1 relation with a pure second-order definition.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
When an 'interpretation' creates a model based on truth, this doesn't include Fregean 'sense' [Hodes]
     Full Idea: A model is created when a language is 'interpreted', by assigning non-logical terms to objects in a set, according to a 'true-in' relation, but we must bear in mind that this 'interpretation' does not associate anything like Fregean senses with terms.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This seems like a key point (also made by Hofweber) that formal accounts of numbers, as required by logic, will not give an adequate account of the semantics of number-terms in natural languages.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Mathematics is higher-order modal logic [Hodes]
     Full Idea: I take the view that (agreeing with Aristotle) mathematics only requires the notion of a potential infinity, ...and that mathematics is higher-order modal logic.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: Modern 'modal' accounts of mathematics I take to be heirs of 'if-thenism', which seems to have been Russell's development of Frege's original logicism. I'm beginning to think it is right. But what is the subject-matter of arithmetic?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
     Full Idea: Arithmetic should be able to face boldly the dreadful chance that in the actual world there are only finitely many objects.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.148)
     A reaction: This seems to be a basic requirement for any account of arithmetic, but it was famously a difficulty for early logicism, evaded by making the existence of an infinity of objects into an axiom of the system.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Scientific laws largely rest on the results of counting and measuring [Brouwer]
     Full Idea: A large part of the natural laws introduced by science treat only of the mutual relations between the results of counting and measuring.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.77)
     A reaction: His point, I take it, is that the higher reaches of numbers have lost touch with the original point of the system. I now see the whole issue as just depending on conventions about the agreed extension of the word 'number'.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
It is claimed that numbers are objects which essentially represent cardinality quantifiers [Hodes]
     Full Idea: The mathematical object-theorist says a number is an object that represents a cardinality quantifier, with the representation relation as the entire essence of the nature of such objects as cardinal numbers like 4.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: [compressed] This a classic case of a theory beginning to look dubious once you spell it our precisely. The obvious thought is to make do with the numerical quantifiers, and dispense with the objects. Do other quantifiers need objects to support them?
Numerical terms can't really stand for quantifiers, because that would make them first-level [Hodes]
     Full Idea: The dogmatic Frege is more right than wrong in denying that numerical terms can stand for numerical quantifiers, for there cannot be a language in which object-quantifiers and objects are simultaneously viewed as level zero.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.142)
     A reaction: Subtle. We see why Frege goes on to say that numbers are level zero (i.e. they are objects). We are free, it seems, to rewrite sentences containing number terms to suit whatever logical form appeals. Numbers are just quantifiers?
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists only accept denumerable sets [Brouwer]
     Full Idea: The intuitionist recognises only the existence of denumerable sets.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: That takes you up to omega, but not beyond, presumably because it then loses sight of the original intuition of 'bare two-oneness' (Idea 12453). I sympathise, but the word 'number' has shifted its meaning a lot these days.
Neo-intuitionism abstracts from the reuniting of moments, to intuit bare two-oneness [Brouwer]
     Full Idea: Neo-intuitionism sees the falling apart of moments, reunited while remaining separated in time, as the fundamental phenomenon of human intellect, passing by abstracting to mathematical thinking, the intuition of bare two-oneness.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: [compressed] A famous and somewhat obscure idea. He goes on to say that this creates one and two, and all the finite ordinals.
7. Existence / D. Theories of Reality / 7. Fictionalism
Talk of mirror images is 'encoded fictions' about real facts [Hodes]
     Full Idea: Talk about mirror images is a sort of fictional discourse. Statements 'about' such fictions are not made true or false by our whims; rather they 'encode' facts about the things reflected in mirrors.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.146)
     A reaction: Hodes's proposal for how we should view abstract objects (c.f. Frege and Dummett on 'the equator'). The facts involved are concrete, but Hodes is offering 'encoding fictionalism' as a linguistic account of such abstractions. He applies it to numbers.
19. Language / A. Nature of Meaning / 1. Meaning
The meaning or purport of a symbol is all the rational conduct it would lead to [Peirce]
     Full Idea: The entire intellectual purport of any symbol consists in the total of all modes of rational conduct which, conditionally upon all the possible different circumstances and desires, would ensue upon the acceptance of the symbol.
     From: Charles Sanders Peirce (Issues of Pragmaticism [1905], EP ii.246), quoted by Danielle Macbeth - Pragmatism and Objective Truth p.169 n1
     A reaction: Macbeth says pragmatism is founded on this theory of meaning, rather than on a theory of truth. I don't see why the causes of a symbol shouldn't be as much a part of its meaning as the consequences are.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Intuitonists in mathematics worried about unjustified assertion, as well as contradiction [Brouwer, by George/Velleman]
     Full Idea: The concern of mathematical intuitionists was that the use of certain forms of inference generates, not contradiction, but unjustified assertions.
     From: report of Luitzen E.J. Brouwer (Intuitionism and Formalism [1912]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems to be the real origin of the verificationist idea in the theory of meaning. It is a hugely revolutionary idea - that ideas are not only ruled out of court by contradiction, but that there are other criteria which should also be met.