Combining Texts

All the ideas for 'The Sayings of Confucius', 'Semantic Relationism' and 'works'

unexpand these ideas     |    start again     |     specify just one area for these texts


68 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
The usual Tarskian interpretation of variables is to specify their range of values [Fine,K]
     Full Idea: The usual Tarskian way of indicating how a variable is to be interpreted is to simply specify its range of values.
     From: Kit Fine (Semantic Relationism [2007], 1.B)
Variables can be viewed as special terms - functions taking assignments into individuals [Fine,K]
     Full Idea: The alternative Tarskian way of indicating how a variable is to be interpreted is that a variable x will be a special case of the semantic value of the term; it will be a function which takes each assignment into the individual which it assigns to x.
     From: Kit Fine (Semantic Relationism [2007], 1.B)
It seemed that Frege gave the syntax for variables, and Tarski the semantics, and that was that [Fine,K]
     Full Idea: Once Frege had provided a clear syntactic account of variables and once Tarski had supplemented this with a rigorous semantic account, it would appear that there was nothing more of significance to be said.
     From: Kit Fine (Semantic Relationism [2007], 1)
     A reaction: He later remarks that there are now three semantic accounts: the Tarskian, the instantial, and the algebraic [see xref ideas]. He offers a fourth account in his Semantic Relationism. This grows from his puzzles about variables.
In separate expressions variables seem identical in role, but in the same expression they aren't [Fine,K]
     Full Idea: When we consider the semantic role of 'x' and 'y' in two distinct expressions x>0 and y>0, their semantic roles seems the same. But in the same expression, such as x>y, their roles seem to be different.
     From: Kit Fine (Semantic Relationism [2007], 1.A)
     A reaction: [compressed] This new puzzle about variables leads Fine to say that the semantics of variables, and other expressions, is not intrinsic to them, but depends on their external relations. Variables denote any term - unless another variable got there first.
The 'algebraic' account of variables reduces quantification to the algebra of its component parts [Fine,K]
     Full Idea: In the 'algebraic' approach to variables, we move from a quantified sentence to the term specifying a property (the λ-term), and then reducing to the algebraic operations for atomic formulas.
     From: Kit Fine (Semantic Relationism [2007], 1.C)
     A reaction: [Bealer is a source for this view] Fine describes it as an 'algebra of operations'. I presume this is a thoroughly formalist approach to the matter, which doesn't seem to get to the heart of the semantic question.
'Instantial' accounts of variables say we grasp arbitrary instances from their use in quantification [Fine,K]
     Full Idea: According to the 'instantial' approach to variables, a closed quantified sentence is to be understood on the basis of one of its instances; from an understanding of an instance we understand satisfaction by an arbitrary individual.
     From: Kit Fine (Semantic Relationism [2007], 1.D)
     A reaction: Fine comments that this is intuitively plausible, but not very precise, because it depends on 'abstraction' of the individual from the expression.
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Cicero/Cicero and Cicero/Tully may differ in relationship, despite being semantically the same [Fine,K]
     Full Idea: There may be a semantic relationship between 'Cicero' and 'Cicero' that does not hold between 'Cicero' and 'Tully', despite the lack of an intrinsic semantic difference between the names themselves.
     From: Kit Fine (Semantic Relationism [2007], 2.E)
     A reaction: This is the key idea of Fine's book, and a most original and promising approach to a rather intractable problem in reference. He goes on to distinguish names which are 'strictly' coreferential (the first pair) from those that are 'accidentally' so.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
9. Objects / F. Identity among Objects / 1. Concept of Identity
I can only represent individuals as the same if I do not already represent them as the same [Fine,K]
     Full Idea: I can only represent two individuals as being the same if I do not already represent them as the same.
     From: Kit Fine (Semantic Relationism [2007], 3.A)
     A reaction: A very nice simple point. If I say 'Hesperus is Hesperus' I am unable to comment on the object, but 'Hesperus is Phosphorus' has a different expressive power. Start from contexts where it is necessary to say that two things are actually one.
9. Objects / F. Identity among Objects / 5. Self-Identity
If Cicero=Tully refers to the man twice, then surely Cicero=Cicero does as well? [Fine,K]
     Full Idea: 'Cicero=Cicero' and 'Cicero=Tully' are both dyadic predications. It is unnatural to suppose that the use of the same name converts a dyadic predicate into a reflexive predicate, or that there is one reference to Cicero in the first and two in the second.
     From: Kit Fine (Semantic Relationism [2007], 3.A)
     A reaction: I am deeply suspicious of the supposed 'property' of being self-identical, but that may not deny that it could be a genuine truth (shorthand for 'the C you saw is the same as the C I saw'). Having an identity makes equality with self possible.
18. Thought / B. Mechanics of Thought / 5. Mental Files
Mental files are devices for keeping track of basic coordination of objects [Fine,K]
     Full Idea: Mental files should be seen as a device for keeping track of when objects are coordinated (represented as-the-same) and, rather than understand coordination in terms of mental files, we should understand mental files in terms of coordination.
     From: Kit Fine (Semantic Relationism [2007], 3.A)
     A reaction: Personally I think that the metaphor of a 'label' is much closer to the situation than that of a 'file'. Thus my concept of Cicero is labelled 'Tully', 'Roman', 'orator', 'philosophical example'... My problem is to distinguish the concept from its labels.
18. Thought / C. Content / 1. Content
You cannot determine the full content from a thought's intrinsic character, as relations are involved [Fine,K]
     Full Idea: There is no determining the full content of what someone thinks or believes from the individual things that he thinks or believes; we must also look at the threads that tie the contents of these thoughts or beliefs together.
     From: Kit Fine (Semantic Relationism [2007], Intro)
     A reaction: I'm not sure what 'full' content could possibly mean. Does that include all our background beliefs which we hardly ever articulate. Content comes in degrees, or needs an arbitrary boundary?
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
19. Language / C. Assigning Meanings / 2. Semantics
The standard aim of semantics is to assign a semantic value to each expression [Fine,K]
     Full Idea: The aim of semantics, as standardly conceived, is to assign a semantic value to each (meaningful) expression of the language under consideration.
     From: Kit Fine (Semantic Relationism [2007], 1.G)
     A reaction: Fine is raising the difficulty that these values can get entangled with one another. He proposes 'semantic connections' as a better aim.
That two utterances say the same thing may not be intrinsic to them, but involve their relationships [Fine,K]
     Full Idea: In my 'Semantic Relationism' the fact that two utterances say the same thing is not entirely a matter of their intrinsic semantic features; it may also turn on semantic relationships among the utterances of their parts not reducible to those features.
     From: Kit Fine (Semantic Relationism [2007], Intro)
     A reaction: You'll need to read the book slowly several times to get the hang of this, but at least it allows that two different utterances might say the same thing (express the same proposition, I would say).
The two main theories are Holism (which is inferential), and Representational (which is atomistic) [Fine,K]
     Full Idea: For holists a proper theory will be broadly inferential, while for their opponents it will be representational in character, describing relations between expressions and reality. Representational semantics is atomist, holist semantics inferential.
     From: Kit Fine (Semantic Relationism [2007], Intro)
     A reaction: Fine presents these as the two main schools in semantics. His own theory then proposes a more holistic version of the Representational view. He seeks the advantages of Frege's position, but without 'sense'.
We should pursue semantic facts as stated by truths in theories (and not put the theories first!) [Fine,K]
     Full Idea: A 'semantics' is a body of semantic facts, and a 'semantic theory' is a body of semantic truths. The natural order is a theory being understood as truths, which state facts. Davidson, alas, reversed this order, with facts understood through theories.
     From: Kit Fine (Semantic Relationism [2007], 2.C)
     A reaction: [compressed; he cites Davidson 1967, and calls it 'one of the most unfortunate tendencies in modern philosophy of language, ..as if chemistry were understood in terms of formulae rather than chemical facts'].
Referentialist semantics has objects for names, properties for predicates, and propositions for connectives [Fine,K]
     Full Idea: The standard referentialist semantics for a language with names is that the semantic value of the name is the object, the content of a predicate is a property, and the content of a logical connective is an operation on propositions.
     From: Kit Fine (Semantic Relationism [2007], 2.F)
     A reaction: My particular bête noire is the idea that every predicate names a property. It is the tyranny of having to have a comprehensive semantic theory that drives this implausible picture. And I don't see how an object can be a semantic value…
Fregeans approach the world through sense, Referentialists through reference [Fine,K]
     Full Idea: Fregeans emphasise an orientation towards the speaker: possession of sense makes language meaningful, and language relates to the world through sense. For the Referentialist its representational relationships make it meaningful, and relate it to the world
     From: Kit Fine (Semantic Relationism [2007], 2.G)
     A reaction: The Referentialist approach is for Kripkean fans of direct reference, rather than the Fregean reference through descriptions. I am inclined to favour the old-fashioned, deeply discredited, much mocked Fregean approach.
19. Language / C. Assigning Meanings / 9. Indexical Semantics
I take indexicals such as 'this' and 'that' to be linked to some associated demonstration [Fine,K]
     Full Idea: Demonstrative uses of an indexical such as 'this' or 'that' should be taken to be anaphoric on an associated demonstration. It is a semantic requirement on the use of the indexical that it be coreferential with the demonstration.
     From: Kit Fine (Semantic Relationism [2007], Post 'Indexicals')
     A reaction: Similarly 'now' must connect to looking at a clock, and 'I' to pointing at some person. The demonstration could be of a verbal event, as much as a physical one.
19. Language / F. Communication / 1. Rhetoric
People who control others with fluent language often end up being hated [Kongzi (Confucius)]
     Full Idea: Of what use is eloquence? He who engages in fluency of words to control men often finds himself hated by them.
     From: Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE], V.5)
     A reaction: I don't recall Socrates making this very good point to any of the sophists (such as Gorgias). The idea that if you battle or connive your way to dominance over others then you are successful is false. Life is a much longer game than that.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / h. Against ethics
All men prefer outward appearance to true excellence [Kongzi (Confucius)]
     Full Idea: I have yet to meet a man as fond of excellence as he is of outward appearances.
     From: Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE], IX.18)
     A reaction: Interestingly, this cynical view of the love of virtue is put by Plato into the mouths of Glaucon and Adeimantus (in Bk II of 'Republic', e.g. Idea 12), and not into the mouth of Socrates, who goes on to defend the possibility of true virtue.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Humans are similar, but social conventions drive us apart (sages and idiots being the exceptions) [Kongzi (Confucius)]
     Full Idea: In our natures we approximate one another; habits put us further and further apart. The only ones who do not change are sages and idiots.
     From: Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE], XVII.2)
     A reaction: I find most of Confucius rather uninteresting, but this is a splendid remark about the influence of social conventions on human nature. Sages can achieve universal morality if they rise above social convention, and seek the true virtues of human nature.
23. Ethics / B. Contract Ethics / 2. Golden Rule
Do not do to others what you would not desire yourself [Kongzi (Confucius)]
     Full Idea: Do not do to others what you would not desire yourself. Then you will have no enemies, either in the state or in your home.
     From: Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE], XII.2)
     A reaction: The Golden Rule, but note the second sentence. Logically, it leads to the absurdity of not giving someone an Elvis record for Christmas because you yourself don't like Elvis. Kant (Idea 3733) and Nietzsche (Idea 4560) offer good criticisms.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / f. The Mean
Excess and deficiency are equally at fault [Kongzi (Confucius)]
     Full Idea: Excess and deficiency are equally at fault.
     From: Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE], XI.16)
     A reaction: This is the sort of wisdom we admire in Aristotle (and in any sensible person), but it may also be the deepest motto of conservatism, and it is a long way from romantic philosophy, and the clarion call of Nietzsche to greater excitement in life.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The virtues of the best people are humility, maganimity, sincerity, diligence, and graciousness [Kongzi (Confucius)]
     Full Idea: He who in this world can practise five things may indeed be considered Man-at-his-best: humility, maganimity, sincerity, diligence, and graciousness.
     From: Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE], XVII.5)
     A reaction: A very nice list. Who could resist working with a colleague who had such virtues? Who could go wrong if they married a person who had them? I can't think of anything important that is missing.
24. Political Theory / C. Ruling a State / 2. Leaders / d. Elites
Men of the highest calibre avoid political life completely [Kongzi (Confucius)]
     Full Idea: Men of the highest calibre avoid political life completely.
     From: Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE], XIV.37)
     A reaction: Plato notes that such people tend to avoid political life (and a left sheltering, as if from a wild storm!), but he thinks they should be dragged into the political arena for the common good. Confucius seems to approve of the avoidance. Plato is right.
24. Political Theory / D. Ideologies / 3. Conservatism
Confucianism assumes that all good developments have happened, and there is only one Way [Norden on Kongzi (Confucius)]
     Full Idea: The two major limitations of Confucianism are that it assumes that all worthwhile cultural, social and ethical innovation has already occurred, and that it does not recognise the plurality of worthwhile ways of life.
     From: comment on Kongzi (Confucius) (The Analects (Lunyu) [c.511 BCE]) by Bryan van Norden - Intro to Classical Chinese Philosophy 3.III
     A reaction: In modern liberal terms that is about as conservative as it is possible to get. We think of it as the state of mind of an old person who can only long for the way things were when they were young. But 'hold fast to that which is good'!
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.