Combining Texts

All the ideas for 'Substance and Individuation in Leibniz', 'Critique of Judgement II: Teleological' and 'What Required for Foundation for Maths?'

unexpand these ideas     |    start again     |     specify just one area for these texts


47 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
8. Modes of Existence / A. Relations / 1. Nature of Relations
Scholastics treat relations as two separate predicates of the relata [Cover/O'Leary-Hawthorne]
     Full Idea: The scholastics treated it as a step in the right explanatory direction to analyze a relational statement of the form 'aRb' into two subject-predicate statements, attributing different relational predicates to a and to b.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 2.2.1)
     A reaction: The only alternative seems to be Russell's view of relations as pure universals, having a life of their own, quite apart from their relata. Or you could take them as properties of space, time (and powers?), external to the relata?
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
If you individuate things by their origin, you still have to individuate the origins themselves [Cover/O'Leary-Hawthorne]
     Full Idea: If we go for the necessity-of-origins view, A and B are different if the origin of A is different from the origin of B. But one is left with the further question 'When is the origin of A distinct from the origin of B?'
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: There may be an answer to this, in a regress of origins that support one another, but in the end the objection is obviously good. You can't begin to refer to an 'origin' if you can't identify anything in the first place.
Numerical difference is a symmetrical notion, unlike proper individuation [Cover/O'Leary-Hawthorne]
     Full Idea: Scholastics distinguished criteria of numerical difference from questions of individuation proper, since numerical difference is a symmetrical notion.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: This apparently old-fashioned point appears to be conclusively correct. Modern thinkers, though, aren't comfortable with proper individuation, because they don't believe in concepts like 'essence' and 'substance' that are needed for the job.
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
Haecceity as property, or as colourless thisness, or as singleton set [Cover/O'Leary-Hawthorne]
     Full Idea: There is a contemporary property construal of haecceities, ...and a Scotistic construal as primitive, 'colourless' thisnesses which, unlike singleton-set haecceities, are aimed to do some explanatory work.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.4)
     A reaction: [He associates the contemporary account with David Kaplan] I suppose I would say that individuation is done by properties, but not by some single property, so I take it that I don't believe in haecceities at all. What individuates a haecceity?
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
Maybe 'substance' is more of a mass-noun than a count-noun [Cover/O'Leary-Hawthorne]
     Full Idea: We could think of 'substance' on the model of a mass noun, rather than a count noun.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.3)
     A reaction: They offer this to help Leibniz out of a mess, but I think he would be appalled. The proposal seems close to 'prime matter' in Aristotle, which never quite does the job required of it. The idea is nice, though, and should be taken seriously.
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
We can ask for the nature of substance, about type of substance, and about individual substances [Cover/O'Leary-Hawthorne]
     Full Idea: In the 'blueprint' approach to substance, we confront at least three questions: What is it for a thing to be an individual substance? What is it for a thing to be the kind of substance that it is? What is it to be that very individual substance?
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.1)
     A reaction: My working view is that the answer to the first question is that substance is essence, that the second question is overrated and parasitic on the third, and that the third is the key question, and also reduces to essence.
9. Objects / B. Unity of Objects / 2. Substance / d. Substance defined
The general assumption is that substances cannot possibly be non-substances [Cover/O'Leary-Hawthorne]
     Full Idea: There is a widespread assumption, now and in the past, that substances are essentially substances: nothing is actually a substance but possibly a non-substance.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.2)
     A reaction: It seems to me that they clearly mean, in this context, that substances are 'necessarily' substances, not that they are 'essentially' substances. I would just say that substances are essences, and leave the necessity question open.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
Modern essences are sets of essential predicate-functions [Cover/O'Leary-Hawthorne]
     Full Idea: The modern view of essence is that the essence of a particular thing is given by the set of predicate-functions essential to it, and the essence of any kind is given by the set of predicate-functions essential to every possible member of that kind.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.2.2)
     A reaction: Thus the modern view has elided the meanings of 'essential' and 'necessary' when talking of properties. They are said to be 'functions' from possible worlds to individuals. The old view (and mine) demands real essences, not necessary properties.
Modern essentialists express essence as functions from worlds to extensions for predicates [Cover/O'Leary-Hawthorne]
     Full Idea: The modern essentialist gives the same metaphysical treatment to every grammatical predicate - by associating a function from worlds to extensions for each.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 2.2)
     A reaction: I take this to mean that essentialism is the view that if some predicate attaches to an object then that predicate is essential if there is an extension of that predicate in all possible worlds. In English, essential predicates are necessary predicates.
9. Objects / E. Objects over Time / 12. Origin as Essential
Necessity-of-origin won't distinguish ex nihilo creations, or things sharing an origin [Cover/O'Leary-Hawthorne]
     Full Idea: A necessity-of-origins approach cannot work to distinguish things that come into being genuinely ex nihilo, and cannot work to distinguish things sharing a single origin.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: Since I am deeply suspicious of essentiality or necessity of origin (and they are not, I presume, the same thing) I like these two. Twins have always bothered me with the second case (where order of birth seems irrelevant).
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Even extreme modal realists might allow transworld identity for abstract objects [Cover/O'Leary-Hawthorne]
     Full Idea: It might be suggested that even the extreme modal realist can countenance transworld identity for abstract objects.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 3.2.2 n46)
     A reaction: This may sound right for uncontroversial or well-defined abstracta such as numbers and circles, but even 'or' is ambiguous, and heaven knows what the transworld identity of 'democracy' is!
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
We can go beyond mere causal explanations if we believe in an 'order of being' [Cover/O'Leary-Hawthorne]
     Full Idea: The philosopher comfortable with an 'order of being' has richer resources to make sense of the 'in virtue of' relation than that provided only by causal relations between states of affairs, positing in addition other sorts of explanatory relationships.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.2)
     A reaction: This might best be characterised as 'ontological dependence', and could be seen as a non-causal but fundamental explanatory relationship, and not one that has to depend on a theistic world view.
22. Metaethics / B. Value / 1. Nature of Value / f. Ultimate value
What is contemplated must have a higher value than contemplation [Kant, by Korsgaard]
     Full Idea: Kant objects that the world must have a final purpose in order to be worth contemplating, so contemplation cannot be that final purpose.
     From: report of Immanuel Kant (Critique of Judgement II: Teleological [1790]) by Christine M. Korsgaard - Aristotle and Kant on the Source of Value 8 'Arist and'
     A reaction: That is a very good objection. If we contemplate the ordered heavens, the ordering of the heavens seems to have a greater value than our contemplation of them. The reply is that the contemplation is the final purpose being contemplated!
Only a good will can give man's being, and hence the world, a final purpose [Kant]
     Full Idea: A good will is that whereby alone [man's] being can have an absolute worth and in reference to which the being of the world can have a final purpose.
     From: Immanuel Kant (Critique of Judgement II: Teleological [1790], C3 443), quoted by Christine M. Korsgaard - Aristotle and Kant on the Source of Value 8 'Kant'
     A reaction: I wish Kant gave a better account of what a 'good' will consists of. This is an awful burden to bear when you are making decisions.
26. Natural Theory / A. Speculations on Nature / 1. Nature
The Critique of Judgement aims for a principle that unities humanity and nature [Kant, by Bowie]
     Full Idea: The Critique of Judgement aims to show how judgement functions 'according to the principle of the appropriateness of nature to our capacity for cognition'. It is meant to provide a principle of the unity of humankind and nature.
     From: report of Immanuel Kant (Critique of Judgement II: Teleological [1790]) by Andrew Bowie - German Philosophy: a very short introduction 1
     A reaction: Hence this work is often overlooked as a key part of Kant's 'system'. At first he probably didn't realise he was creating a system. Kant set an agenda for the philosophy of the ensuing thirty years.
26. Natural Theory / A. Speculations on Nature / 2. Natural Purpose / b. Limited purposes
Without men creation would be in vain, and without final purpose [Kant]
     Full Idea: Without men the whole creation would be mere waste, in vain, and without final purpose.
     From: Immanuel Kant (Critique of Judgement II: Teleological [1790], C3 442), quoted by Christine M. Korsgaard - Aristotle and Kant on the Source of Value 8 'Kant'
     A reaction: The standard early twenty-first century response to that is 'get over it'! The remark shows how deep religion runs in Kant, despite his great caution about the existence of God. His notion of 'duty' is similarly religious.