Combining Texts

All the ideas for 'Substance and Individuation in Leibniz', 'Quantum: Einstein and Bohr' and 'A Mathematical Introduction to Logic (2nd)'

unexpand these ideas     |    start again     |     specify just one area for these texts


43 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
     Full Idea: Until the 1960s standard truth-table semantics were the only ones that there were.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.10.1)
     A reaction: The 1960s presumably marked the advent of possible worlds.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
     Full Idea: 'dom R' indicates the 'domain' of a relation, that is, the set of all objects that are members of ordered pairs and that have that relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'fld R' indicates the 'field' of all objects in the relation [Enderton]
     Full Idea: 'fld R' indicates the 'field' of a relation, that is, the set of all objects that are members of ordered pairs on either side of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'ran R' indicates the 'range' of objects being related to [Enderton]
     Full Idea: 'ran R' indicates the 'range' of a relation, that is, the set of all objects that are members of ordered pairs and that are related to by the first objects.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
     Full Idea: We write F : A → B to indicate that A maps into B, that is, the domain of relating things is set A, and the things related to are all in B. If we add that F = B, then A maps 'onto' B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'F(x)' is the unique value which F assumes for a value of x [Enderton]
     Full Idea: F(x) is a 'function', which indicates the unique value which y takes in ∈ F. That is, F(x) is the value y which F assumes at x.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
     Full Idea: An 'equivalence relation' is a binary relation which is reflexive, and symmetric, and transitive.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
     Full Idea: Equivalence classes will 'partition' a set. That is, it will divide it into distinct subsets, according to each relation on the set.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
     Full Idea: The process is dubbed 'conversational implicature' when the inference is not from the content of what has been said, but from the fact that it has been said.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7.3)
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
     Full Idea: The point of logic is to give an account of the notion of validity,..in two standard ways: the semantic way says that a valid inference preserves truth (symbol |=), and the proof-theoretic way is defined in terms of purely formal procedures (symbol |-).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.3..)
     A reaction: This division can be mirrored in mathematics, where it is either to do with counting or theorising about things in the physical world, or following sets of rules from axioms. Language can discuss reality, or play word-games.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
     Full Idea: A is a logical truth (tautology) (|= A) iff it is a semantic consequence of the empty set of premises (φ |= A), that is, every interpretation makes A true.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.3.4)
     A reaction: So the final column of every line of the truth table will be T.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
     Full Idea: A truth assignment 'satisfies' a formula, or set of formulae, if it evaluates as True when all of its components have been assigned truth values.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.2)
     A reaction: [very roughly what Enderton says!] The concept becomes most significant when a large set of wff's is pronounced 'satisfied' after a truth assignment leads to them all being true.
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
     Full Idea: If every proof-theoretically valid inference is semantically valid (so that |- entails |=), the proof theory is said to be 'sound'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
     Full Idea: If a wff is tautologically implied by a set of wff's, it is implied by a finite subset of them; and if every finite subset is satisfiable, then so is the whole set of wff's.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: [Enderton's account is more symbolic] He adds that this also applies to models. It is a 'theorem' because it can be proved. It is a major theorem in logic, because it brings the infinite under control, and who doesn't want that?
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
     Full Idea: A set of expressions is 'decidable' iff there exists an effective procedure (qv) that, given some expression, will decide whether or not the expression is included in the set (i.e. doesn't contradict it).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7)
     A reaction: This is obviously a highly desirable feature for a really reliable system of expressions to possess. All finite sets are decidable, but some infinite sets are not.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
8. Modes of Existence / A. Relations / 1. Nature of Relations
Scholastics treat relations as two separate predicates of the relata [Cover/O'Leary-Hawthorne]
     Full Idea: The scholastics treated it as a step in the right explanatory direction to analyze a relational statement of the form 'aRb' into two subject-predicate statements, attributing different relational predicates to a and to b.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 2.2.1)
     A reaction: The only alternative seems to be Russell's view of relations as pure universals, having a life of their own, quite apart from their relata. Or you could take them as properties of space, time (and powers?), external to the relata?
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
If you individuate things by their origin, you still have to individuate the origins themselves [Cover/O'Leary-Hawthorne]
     Full Idea: If we go for the necessity-of-origins view, A and B are different if the origin of A is different from the origin of B. But one is left with the further question 'When is the origin of A distinct from the origin of B?'
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: There may be an answer to this, in a regress of origins that support one another, but in the end the objection is obviously good. You can't begin to refer to an 'origin' if you can't identify anything in the first place.
Numerical difference is a symmetrical notion, unlike proper individuation [Cover/O'Leary-Hawthorne]
     Full Idea: Scholastics distinguished criteria of numerical difference from questions of individuation proper, since numerical difference is a symmetrical notion.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: This apparently old-fashioned point appears to be conclusively correct. Modern thinkers, though, aren't comfortable with proper individuation, because they don't believe in concepts like 'essence' and 'substance' that are needed for the job.
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
Haecceity as property, or as colourless thisness, or as singleton set [Cover/O'Leary-Hawthorne]
     Full Idea: There is a contemporary property construal of haecceities, ...and a Scotistic construal as primitive, 'colourless' thisnesses which, unlike singleton-set haecceities, are aimed to do some explanatory work.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.4)
     A reaction: [He associates the contemporary account with David Kaplan] I suppose I would say that individuation is done by properties, but not by some single property, so I take it that I don't believe in haecceities at all. What individuates a haecceity?
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
Maybe 'substance' is more of a mass-noun than a count-noun [Cover/O'Leary-Hawthorne]
     Full Idea: We could think of 'substance' on the model of a mass noun, rather than a count noun.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.3)
     A reaction: They offer this to help Leibniz out of a mess, but I think he would be appalled. The proposal seems close to 'prime matter' in Aristotle, which never quite does the job required of it. The idea is nice, though, and should be taken seriously.
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
We can ask for the nature of substance, about type of substance, and about individual substances [Cover/O'Leary-Hawthorne]
     Full Idea: In the 'blueprint' approach to substance, we confront at least three questions: What is it for a thing to be an individual substance? What is it for a thing to be the kind of substance that it is? What is it to be that very individual substance?
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.1)
     A reaction: My working view is that the answer to the first question is that substance is essence, that the second question is overrated and parasitic on the third, and that the third is the key question, and also reduces to essence.
9. Objects / B. Unity of Objects / 2. Substance / d. Substance defined
The general assumption is that substances cannot possibly be non-substances [Cover/O'Leary-Hawthorne]
     Full Idea: There is a widespread assumption, now and in the past, that substances are essentially substances: nothing is actually a substance but possibly a non-substance.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.2)
     A reaction: It seems to me that they clearly mean, in this context, that substances are 'necessarily' substances, not that they are 'essentially' substances. I would just say that substances are essences, and leave the necessity question open.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
Modern essences are sets of essential predicate-functions [Cover/O'Leary-Hawthorne]
     Full Idea: The modern view of essence is that the essence of a particular thing is given by the set of predicate-functions essential to it, and the essence of any kind is given by the set of predicate-functions essential to every possible member of that kind.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.2.2)
     A reaction: Thus the modern view has elided the meanings of 'essential' and 'necessary' when talking of properties. They are said to be 'functions' from possible worlds to individuals. The old view (and mine) demands real essences, not necessary properties.
Modern essentialists express essence as functions from worlds to extensions for predicates [Cover/O'Leary-Hawthorne]
     Full Idea: The modern essentialist gives the same metaphysical treatment to every grammatical predicate - by associating a function from worlds to extensions for each.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 2.2)
     A reaction: I take this to mean that essentialism is the view that if some predicate attaches to an object then that predicate is essential if there is an extension of that predicate in all possible worlds. In English, essential predicates are necessary predicates.
9. Objects / E. Objects over Time / 12. Origin as Essential
Necessity-of-origin won't distinguish ex nihilo creations, or things sharing an origin [Cover/O'Leary-Hawthorne]
     Full Idea: A necessity-of-origins approach cannot work to distinguish things that come into being genuinely ex nihilo, and cannot work to distinguish things sharing a single origin.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: Since I am deeply suspicious of essentiality or necessity of origin (and they are not, I presume, the same thing) I like these two. Twins have always bothered me with the second case (where order of birth seems irrelevant).
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
     Full Idea: Not all sentences using 'if' are conditionals. Consider 'if you want a banana, there is one in the kitchen'. The rough test is that a conditional can be rewritten as 'that A implies that B'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.6.4)
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Even extreme modal realists might allow transworld identity for abstract objects [Cover/O'Leary-Hawthorne]
     Full Idea: It might be suggested that even the extreme modal realist can countenance transworld identity for abstract objects.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 3.2.2 n46)
     A reaction: This may sound right for uncontroversial or well-defined abstracta such as numbers and circles, but even 'or' is ambiguous, and heaven knows what the transworld identity of 'democracy' is!
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
We can go beyond mere causal explanations if we believe in an 'order of being' [Cover/O'Leary-Hawthorne]
     Full Idea: The philosopher comfortable with an 'order of being' has richer resources to make sense of the 'in virtue of' relation than that provided only by causal relations between states of affairs, positing in addition other sorts of explanatory relationships.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.2)
     A reaction: This might best be characterised as 'ontological dependence', and could be seen as a non-causal but fundamental explanatory relationship, and not one that has to depend on a theistic world view.
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Bohr explained the periodic table and chemical properties of elements, using the quantum atom [Kumar]
     Full Idea: Bohr used the quantum atom to explain the periodic table and the chemical properties of the elements. ...It was his new theory about the arrangement of electrons inside atoms that explained the placing and grouping of elements in the periodic table.
     From: Manjit Kumar (Quantum: Einstein and Bohr [2008], Ch 04)
     A reaction: (second sentence p.133) This is Exhibit A for the idea that essences are explanatory, and are discovered by scientists. The moot point would be whether it is appropriate to describe electron shells as part of the 'essence' of an atom.