Combining Texts

All the ideas for 'fragments/reports', 'Isolation and Non-arbitrary Division' and 'First-order Logic, 2nd-order, Completeness'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic needs the sets, and its consequence has epistemological problems [Rossberg]
     Full Idea: Second-order logic raises doubts because of its ontological commitment to the set-theoretic hierarchy, and the allegedly problematic epistemic status of the second-order consequence relation.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §1)
     A reaction: The 'epistemic' problem is whether you can know the truths, given that the logic is incomplete, and so they cannot all be proved. Rossberg defends second-order logic against the second problem. A third problem is that it may be mathematics.
Henkin semantics has a second domain of predicates and relations (in upper case) [Rossberg]
     Full Idea: Henkin semantics (for second-order logic) specifies a second domain of predicates and relations for the upper case constants and variables.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This second domain is restricted to predicates and relations which are actually instantiated in the model. Second-order logic is complete with this semantics. Cf. Idea 10756.
There are at least seven possible systems of semantics for second-order logic [Rossberg]
     Full Idea: In addition to standard and Henkin semantics for second-order logic, one might also employ substitutional or game-theoretical or topological semantics, or Boolos's plural interpretation, or even a semantics inspired by Lesniewski.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This is helpful in seeing the full picture of what is going on in these logical systems.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence is intuitively semantic, and captured by model theory [Rossberg]
     Full Idea: Logical consequence is intuitively taken to be a semantic notion, ...and it is therefore the formal semantics, i.e. the model theory, that captures logical consequence.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: If you come at the issue from normal speech, this seems right, but if you start thinking about the necessity of logical consequence, that formal rules and proof-theory seem to be the foundation.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Γ |- S says S can be deduced from Γ; Γ |= S says a good model for Γ makes S true [Rossberg]
     Full Idea: Deductive consequence, written Γ|-S, is loosely read as 'the sentence S can be deduced from the sentences Γ', and semantic consequence Γ|=S says 'all models that make Γ true make S true as well'.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: We might read |= as 'true in the same model as'. What is the relation, though, between the LHS and the RHS? They seem to be mutually related to some model, but not directly to one another.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
In proof-theory, logical form is shown by the logical constants [Rossberg]
     Full Idea: A proof-theorist could insist that the logical form of a sentence is exhibited by the logical constants that it contains.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: You have to first get to the formal logical constants, rather than the natural language ones. E.g. what is the truth table for 'but'? There is also the matter of the quantifiers and the domain, and distinguishing real objects and predicates from bogus.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is a domain, and an interpretation assigning objects, predicates, relations etc. [Rossberg]
     Full Idea: A standard model is a set of objects called the 'domain', and an interpretation function, assigning objects in the domain to names, subsets to predicate letters, subsets of the Cartesian product of the domain with itself to binary relation symbols etc.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: The model actually specifies which objects have which predicates, and which objects are in which relations. Tarski's account of truth in terms of 'satisfaction' seems to be just a description of those pre-decided facts.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
If models of a mathematical theory are all isomorphic, it is 'categorical', with essentially one model [Rossberg]
     Full Idea: A mathematical theory is 'categorical' if, and only if, all of its models are isomorphic. Such a theory then essentially has just one model, the standard one.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: So the term 'categorical' is gradually replacing the much-used phrase 'up to isomorphism'.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness can always be achieved by cunning model-design [Rossberg]
     Full Idea: All that should be required to get a semantics relative to which a given deductive system is complete is a sufficiently cunning model-theorist.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §5)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
A deductive system is only incomplete with respect to a formal semantics [Rossberg]
     Full Idea: No deductive system is semantically incomplete in and of itself; rather a deductive system is incomplete with respect to a specified formal semantics.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This important point indicates that a system might be complete with one semantics and incomplete with another. E.g. second-order logic can be made complete by employing a 'Henkin semantics'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Objects do not naturally form countable units [Koslicki]
     Full Idea: Objects do not by themselves naturally fall into countable units.
     From: Kathrin Koslicki (Isolation and Non-arbitrary Division [1997], 2.2)
     A reaction: Hm. This seems to be modern Fregean orthodoxy. Why did the institution of counting ever get started if the things in the world didn't demand counting? Even birds are aware of the number of eggs in their nest (because they miss a stolen one).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can still count squares, even if they overlap [Koslicki]
     Full Idea: The fact that there is overlap does not seem to inhibit our ability to count squares.
     From: Kathrin Koslicki (Isolation and Non-arbitrary Division [1997], 2.2)
     A reaction: She has a diagram of three squares overlapping slightly at their corners. Contrary to Frege, these seems to depend on a subliminal concept of the square that doesn't depend on language.
There is no deep reason why we count carrots but not asparagus [Koslicki]
     Full Idea: Why do speakers of English count carrots but not asparagus? There is no 'deep' reason.
     From: Kathrin Koslicki (Isolation and Non-arbitrary Division [1997])
     A reaction: Koslick is offering this to defend the Fregean conceptual view of counting, but what seems to matter is what is countable, and not whether we happen to count it. You don't need to know what carrots are to count them. Cooks count asparagus.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
We struggle to count branches and waves because our concepts lack clear boundaries [Koslicki]
     Full Idea: The reason we have a hard time counting the branches and the waves is because our concepts 'branches on the tree' and 'waves on the ocean' do not determine sufficiently precise boundaries: the concepts do not draw a clear invisible line around each thing.
     From: Kathrin Koslicki (Isolation and Non-arbitrary Division [1997], 2.2)
     A reaction: This is the 'isolation' referred to in Frege.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
We talk of snow as what stays the same, when it is a heap or drift or expanse [Koslicki]
     Full Idea: Talk of snow concerns what stays the same when some snow changes, as it might be, from a heap of snow to a drift, to an expanse.
     From: Kathrin Koslicki (Isolation and Non-arbitrary Division [1997], 2.2)
     A reaction: The whiteness also stays the same, but isn't stuff.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / e. Character
Virtue comes more from habit than character [Critias]
     Full Idea: More men are good through habit than through character.
     From: Critias (fragments/reports [c.440 BCE], B09), quoted by John Stobaeus - Anthology 3.29.41
28. God / C. Attitudes to God / 5. Atheism
Fear of the gods was invented to discourage secret sin [Critias]
     Full Idea: When the laws forbade men to commit open crimes of violence, and they began to do them in secret, a wise and clever man invented fear of the gods for mortals, to frighten the wicked, even if they sin in secret.
     From: Critias (fragments/reports [c.440 BCE], B25), quoted by Sextus Empiricus - Against the Professors (six books) 9.54