Combining Texts

All the ideas for 'fragments/reports', 'Abstract Objects' and 'A Mathematical Introduction to Logic (2nd)'

unexpand these ideas     |    start again     |     specify just one area for these texts


39 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
     Full Idea: Until the 1960s standard truth-table semantics were the only ones that there were.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.10.1)
     A reaction: The 1960s presumably marked the advent of possible worlds.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'fld R' indicates the 'field' of all objects in the relation [Enderton]
     Full Idea: 'fld R' indicates the 'field' of a relation, that is, the set of all objects that are members of ordered pairs on either side of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'ran R' indicates the 'range' of objects being related to [Enderton]
     Full Idea: 'ran R' indicates the 'range' of a relation, that is, the set of all objects that are members of ordered pairs and that are related to by the first objects.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'dom R' indicates the 'domain' of objects having a relation [Enderton]
     Full Idea: 'dom R' indicates the 'domain' of a relation, that is, the set of all objects that are members of ordered pairs and that have that relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
     Full Idea: We write F : A → B to indicate that A maps into B, that is, the domain of relating things is set A, and the things related to are all in B. If we add that F = B, then A maps 'onto' B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'F(x)' is the unique value which F assumes for a value of x [Enderton]
     Full Idea: F(x) is a 'function', which indicates the unique value which y takes in ∈ F. That is, F(x) is the value y which F assumes at x.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
     Full Idea: Equivalence classes will 'partition' a set. That is, it will divide it into distinct subsets, according to each relation on the set.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
     Full Idea: An 'equivalence relation' is a binary relation which is reflexive, and symmetric, and transitive.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
     Full Idea: The process is dubbed 'conversational implicature' when the inference is not from the content of what has been said, but from the fact that it has been said.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7.3)
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
     Full Idea: The point of logic is to give an account of the notion of validity,..in two standard ways: the semantic way says that a valid inference preserves truth (symbol |=), and the proof-theoretic way is defined in terms of purely formal procedures (symbol |-).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.3..)
     A reaction: This division can be mirrored in mathematics, where it is either to do with counting or theorising about things in the physical world, or following sets of rules from axioms. Language can discuss reality, or play word-games.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
     Full Idea: A is a logical truth (tautology) (|= A) iff it is a semantic consequence of the empty set of premises (φ |= A), that is, every interpretation makes A true.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.3.4)
     A reaction: So the final column of every line of the truth table will be T.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
     Full Idea: A truth assignment 'satisfies' a formula, or set of formulae, if it evaluates as True when all of its components have been assigned truth values.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.2)
     A reaction: [very roughly what Enderton says!] The concept becomes most significant when a large set of wff's is pronounced 'satisfied' after a truth assignment leads to them all being true.
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
     Full Idea: If every proof-theoretically valid inference is semantically valid (so that |- entails |=), the proof theory is said to be 'sound'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
     Full Idea: If a wff is tautologically implied by a set of wff's, it is implied by a finite subset of them; and if every finite subset is satisfiable, then so is the whole set of wff's.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: [Enderton's account is more symbolic] He adds that this also applies to models. It is a 'theorem' because it can be proved. It is a major theorem in logic, because it brings the infinite under control, and who doesn't want that?
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
     Full Idea: A set of expressions is 'decidable' iff there exists an effective procedure (qv) that, given some expression, will decide whether or not the expression is included in the set (i.e. doesn't contradict it).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7)
     A reaction: This is obviously a highly desirable feature for a really reliable system of expressions to possess. All finite sets are decidable, but some infinite sets are not.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
How we refer to abstractions is much less clear than how we refer to other things [Rosen]
     Full Idea: It is unclear how we manage to refer determinately to abstract entities in a sense in which it is not unclear how we manage to refer determinately to other things.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Ex')
     A reaction: This is where problems of abstraction overlap with problems about reference in language. Can we have a 'baptism' account of each abstraction (even very large numbers)? Will descriptions do it? Do abstractions collapse into particulars when we refer?
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
     Full Idea: Not all sentences using 'if' are conditionals. Consider 'if you want a banana, there is one in the kitchen'. The rough test is that a conditional can be rewritten as 'that A implies that B'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.6.4)
18. Thought / E. Abstraction / 2. Abstracta by Selection
The Way of Abstraction used to say an abstraction is an idea that was formed by abstracting [Rosen]
     Full Idea: The simplest version of the Way of Abstraction would be to say that an object is abstract if it is a referent of an idea that was formed by abstraction, but this is wedded to an outmoded philosophy of mind.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: This presumably refers to Locke, who wields the highly ambiguous term 'idea'. But if we sort out that ambiguity (by using modern talk of mental events, concepts and content?) we might reclaim the view. But do we have a 'genetic fallacy' here?
18. Thought / E. Abstraction / 5. Abstracta by Negation
Nowadays abstractions are defined as non-spatial, causally inert things [Rosen]
     Full Idea: If any characterization of the abstract deserves to be regarded as the modern standard one, it is this: an abstract entity is a non-spatial (or non-spatiotemporal) causally inert thing. This view presents a number of perplexities...
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: As indicated in other ideas, the problem is that some abstractions do seem to be located somewhere in space-time, and to have come into existence, and to pass away. I like 'to exist is to have causal powers'. See Ideas 5992 and 8300.
Chess may be abstract, but it has existed in specific space and time [Rosen]
     Full Idea: The natural view of chess is not that it is a non-spatiotemporal mathematical object, but that it was invented at a certain time and place, that it has changed over the years, and so on.
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: This strikes me as being undeniable, and being an incredibly important point. Logicians seem to want to subsume things like games into the highly abstract world of logic and numbers. In fact the direction of explanation should be reversed.
Sets are said to be abstract and non-spatial, but a set of books can be on a shelf [Rosen]
     Full Idea: It is thought that sets are abstract, abstract objects do not exist in space, so sets must not exist in space. But it is not unnatural to say that a set of books is located on a certain shelf in the library.
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: The arguments against non-spatiality of abstractions seem to me to be conclusive. Not being able to assign a location to the cosine function is on a par with not knowing where my thoughts are located in my brain.
18. Thought / E. Abstraction / 6. Abstracta by Conflation
Conflating abstractions with either sets or universals is a big claim, needing a big defence [Rosen]
     Full Idea: The Way of Conflation account of abstractions (identifying them sets or with universals) is now relatively rare. The claim sets or universals are the only abstract objects would amount to a substantive metaphysical thesis, in need of defence.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Con')
     A reaction: If you produce a concept like 'mammal' by psychological abstraction, you do seem to end up with a set of things with shared properties, so this approach is not silly. I can't think of any examples of abstractions which are not sets or universals.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Functional terms can pick out abstractions by asserting an equivalence relation [Rosen]
     Full Idea: On Frege's suggestion, functional terms that pick out abstract expressions (such as 'direction' or 'equinumeral') have a typical form of f(a) = f(b) iff aRb, where R is an equivalence relation, a relation which is reflexive, symmetric and transitive.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: [Wright and Hale are credited with the details] This has become the modern orthodoxy among the logically-minded. Examples of R are 'parallel' or 'just as many as'. It picks out an 'aspect', which isn't far from the old view.
Abstraction by equivalence relationships might prove that a train is an abstract entity [Rosen]
     Full Idea: It seems possible to define a train in terms of its carriages and the connection relationship, which would meet the equivalence account of abstraction, but demonstrate that trains are actually abstract.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: [Compressed. See article for more detail] A tricky example, but a suggestive line of criticism. If you find two physical objects which relate to one another reflexively, symmetrically and transitively, they may turn out to be abstract.
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?