Combining Texts

All the ideas for 'fragments/reports', 'The Big Book of Concepts' and 'Natural Kinds'

unexpand these ideas     |    start again     |     specify just one area for these texts


44 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
12. Knowledge Sources / B. Perception / 5. Interpretation
Research shows perceptual discrimination is sharper at category boundaries [Murphy]
     Full Idea: Goldstone's research has shown how learning concepts can change perceptual units. For example, perceptual discrimination is heightened along category boundaries.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: [Goldstone 1994, 2000] This is just the sort of research which throws a spanner into the simplistic a priori thinking of many philosophers.
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / C. Induction / 1. Induction
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
Induction is said to just compare properties of categories, but the type of property also matters [Murphy]
     Full Idea: Most theories of induction claim that it should depend primarily on the similarity of the categories involved, but then the type of property should not matter, yet research shows that it does.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: I take this to be good empirical support for Gilbert Harman's view that induction is really inference to the best explanation. The thought (which strikes me as obviously correct) is that we bring nested domains of knowledge to bear in induction.
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
The main theories of concepts are exemplar, prototype and knowledge [Murphy]
     Full Idea: The three main theories of concepts under consideration are the exemplar, the prototype and the knowledge approaches.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The theoretical and practical definitions for the classical view are very hard to find [Murphy]
     Full Idea: It has been extremely difficult to find definitions for most natural categories, and even harder to find definitions that are plausible psychological representations that people of all ages would be likely to use.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
The classical definitional approach cannot distinguish typical and atypical category members [Murphy]
     Full Idea: The early psychological approaches to concepts took a definitional approach. ...but this view does not have any way of distinguishing typical and atypical category members (...as when a trout is a typical fish and an eel an atypical one).
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: [pp. 12 and 22] Eleanor Rosch in the 1970s is said to have largely killed off the classical view.
Classical concepts follow classical logic, but concepts in real life don't work that way [Murphy]
     Full Idea: The classical view of concepts has been tied to traditional logic. 'Fido is a dog and a pet' is true if it has the necessary and sufficient conditions for both, ...but there is empirical evidence that people do not follow that rule.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: Examples given are classifying chess as a sport and/or game, and classifying a tree house (which is agreed to be both a building and not a building!).
Classical concepts are transitive hierarchies, but actual categories may be intransitive [Murphy]
     Full Idea: The classical view of concepts explains hierarchical order, where categories form nested sets. But research shows that categories are often not transitive. Research shows that a seat is furniture, and a car seat is a seat, but it is not furniture.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: [compressed] Murphy adds that the nesting of definitions is classically used to match the nesting of hierarchies. This is a nice example of the neatness of the analytic philosopher breaking down when it meets the mess of the world.
The classical core is meant to be the real concept, but actually seems unimportant [Murphy]
     Full Idea: A problem with the revised classical view is that the concept core does not seem to be an important part of the concept, despite its name and theoretical intention as representing the 'real' concept.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: Apparently most researchers feel they can explain their results without reference to any core. Not so fast, I would say (being an essentialist). Maybe people acknowledge an implicit core without knowing what it is. See Susan Gelman.
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
There is no 'ideal' bird or dog, and prototypes give no information about variability [Murphy]
     Full Idea: Is there really an 'ideal bird' that could represent all birds? ...Furthermore a single prototype would give no information about the variability of a category. ...Compare the incredible variety of dogs to the much smaller diversity of cats.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: The point about variability is particularly noteworthy. You only grasp the concept of 'furniture' when you understand its range, as well as its typical examples. What structure is needed in a concept to achieve this?
Prototypes are unified representations of the entire category (rather than of members) [Murphy]
     Full Idea: In the prototype view the entire category is represented by a unified representation rather than separate representations for each member, or for different classes of members.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: This is the improved prototype view, as opposed to the implausible idea that there is one ideal exemplar. The new theory still have the problem of how to represent diversity within the category, while somehow remaining 'unified'.
The prototype theory uses observed features, but can't include their construction [Murphy]
     Full Idea: Nothing in the prototype model says the shape of an animal is more important than its location in identifying its kind. The theory does not provide a way the features can be constructed, rather than just observed.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: This makes some kind of mental modelling central to thought, and not just a bonus once you have empirically acquired the concepts. We bring our full range of experience to bear on even the most instantaneous observations.
The prototype theory handles hierarchical categories and combinations of concepts well [Murphy]
     Full Idea: The prototype view has no trouble with either hierarchical structure or explaining categories. ...Meaning and conceptual combination provide strong evidence for prototypes.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: Prototypes are not vague, making clearer classification possible. A 'mountain lion' is clear, because its components are clear.
Prototypes theory of concepts is best, as a full description with weighted typical features [Murphy]
     Full Idea: Our theory of concepts must be primarily prototype-based. That is, it must be a description of an entire concept, with its typical features (presumably weighted by their importance).
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: This is to be distinguished from the discredited 'classical' view of concepts, that the concept consists of its definition. I take Aristotle's account of definition to be closer to a prototype description than to a dictionary definition.
Learning concepts is forming prototypes with a knowledge structure [Murphy]
     Full Idea: My proposal is that people attempt to form prototypes as part of a larger knowledge structure when they learn concepts.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: This combines theory theory (knowledge) with the prototype view, and sounds rather persuasive. The formation of prototypes fits with the explanatory account of essentialism I am defending. He later calls prototype formation 'abstraction' (494).
18. Thought / D. Concepts / 4. Structure of Concepts / e. Concepts from exemplars
The most popular theories of concepts are based on prototypes or exemplars [Murphy]
     Full Idea: The most popular theories of concepts are based on prototype or exemplar theories that are strongly unclassical.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
The exemplar view of concepts says 'dogs' is the set of dogs I remember [Murphy]
     Full Idea: In the exemplar view of concepts, the idea that people have a representation that somehow encompasses an entire concept is rejected. ...Instead a person's concept of dogs is the set of dogs that the person remembers.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: [The theory was introduced by Medin and Schaffer 1978] I think I have finally met a plausible theory of concepts. When I think 'dog' I conjure up a fuzz of dogs that exhibit the range I have encountered (e.g. tiny to very big). Individuals come first!
Exemplar theory struggles with hierarchical classification and with induction [Murphy]
     Full Idea: The exemplar view has trouble with hierarchical classification and with induction in adults.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: To me these both strongly support essentialism - that you form the concept 'dog' from seeing some dogs, but you then extrapolate to large categories and general truths about dogs, on the assumption of the natures of the dogs you have seen.
Children using knowing and essentialist categories doesn't fit the exemplar view [Murphy]
     Full Idea: The findings showing that children use knowledge and may be essentialist about category membership do not comport well with the exemplar view.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: Tricky, because Gelman persuaded me of the essentialism, but the exemplar view of concepts looks the most promising. Clearly they must be forced to coexist....
Conceptual combination must be compositional, and can't be built up from exemplars [Murphy]
     Full Idea: The exemplar accounts of conceptual combination are demonstrably wrong, because the meaning of a phrase has to be composed from the meaning of its parts (plus broader knowledge), and it cannot be composed as a function of exemplars.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: This sounds quite persuasive, and I begin to see that my favoured essentialism fits the prototype view of concepts best, though this mustn't be interpreted too crudely. We change our prototypes with experience. 'Bird' is a tricky case.
The concept of birds from exemplars must also be used in inductions about birds [Murphy]
     Full Idea: We don't have one concept of birds formed by learning from exemplars, and another concept of birds that is used in induction.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: In other words exemplar concepts break down when we generalise using the concept. The exemplars must be unified, to be usable in thought and language.
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
We do not learn concepts in isolation, but as an integrated part of broader knowledge [Murphy]
     Full Idea: The knowledge approach argues that concepts are part of our general knowledge about the world. We do not learn concepts in isolation, ...but as part of our overall understanding of the world. Animal concepts are integrated with biology, behaviour etc.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: This is one of the leading theories of concepts among psychologists. It seems to be an aspect of the true theory, but it needs underpinning with some account of isolated individual concepts. This is also known as the 'theory theory'.
Concepts with familiar contents are easier to learn [Murphy]
     Full Idea: A concept's content influences how easy it is to learn. If the concept is grossly incompatible with what people know prior to the experiment, it will be difficult to acquire.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: This is a preliminary fact which leads towards the 'knowledge' theory of concepts (aka 'theory theory'). The point being that the knowledge involved is integral to the concept. Fits my preferred mental files approach.
Some knowledge is involved in instant use of categories, other knowledge in explanations [Murphy]
     Full Idea: Some kinds of knowledge are probably directly incorporated into the category representation and used in normal, fast decisions about objects. Other kinds of knowledge, however, may come into play only when it has been solicited.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: This is a summary of empirical research, but seems to fit our normal experience. If you see a hawk, you have some instant understanding, but if you ask what the hawk is doing here, you draw more widely.
People categorise things consistent with their knowledge, even rejecting some good evidence [Murphy]
     Full Idea: People tend to positively categorise items that are consistent with their knowledge and to exclude items that are inconsistent, sometimes even overruling purely empirical sources of information.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: The main rival to 'theory theory' is the purely empirical account of how concepts are acquired. This idea reports empirical research in favour of the theory theory (or 'knowledge') approach.
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.