Combining Texts

All the ideas for 'fragments/reports', 'On the Philosophy of Logic' and 'Axiomatic Thought'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

2. Reason / A. Nature of Reason / 1. On Reason
We reach 'reflective equilibrium' when intuitions and theory completely align [Fisher]
     Full Idea: A state of 'reflective equilibrium' is when our theory and our intuitions become completely aligned
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 12.IV)
     A reaction: [Rawls made this concept famous] This is a helpful concept in trying to spell out the ideal which is the dream of believers in 'pure reason' - that there is a goal in which everything comes right. The problem is when people have different intuitions!
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic says excluded middle and non-contradition are not tautologies [Fisher]
     Full Idea: In three-valued logic (L3), neither the law of excluded middle (p or not-p), nor the law of non-contradiction (not(p and not-p)) will be tautologies. If p has the value 'indeterminate' then so will not-p.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.I)
     A reaction: I quite accept that the world is full of indeterminate propositions, and that excluded middle and non-contradiction can sometimes be uncertain, but I am reluctant to accept that what is being offered here should be called 'logic'.
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
Fuzzy logic has many truth values, ranging in fractions from 0 to 1 [Fisher]
     Full Idea: In fuzzy logic objects have properties to a greater or lesser degree, and truth values are given as fractions or decimals, ranging from 0 to 1. Not-p is defined as 1-p, and other formula are defined in terms of maxima and minima for sets.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.II)
     A reaction: The question seems to be whether this is actually logic, or a recasting of probability theory. Susan Haack attacks it. If logic is the study of how truth is preserved as we move between propositions, then 0 and 1 need a special status.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is: excluded middle, non-contradiction, contradictions imply all, disjunctive syllogism [Fisher]
     Full Idea: For simplicity, we can say that 'classical logic' amounts to the truth of four sentences: 1) either p or not-p; 2) it is not the case that both p and not-p; 3) from p and not-p, infer q; 4) from p or q and not-p, infer q.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 12.I)
     A reaction: [She says there are many ways of specifying classical logic] Intuition suggests that 2 and 4 are rather hard to dispute, while 1 is ignoring some grey areas, and 3 is totally ridiculous. There is, of course, plenty of support for 3!
5. Theory of Logic / C. Ontology of Logic / 2. Platonism in Logic
Logic formalizes how we should reason, but it shouldn't determine whether we are realists [Fisher]
     Full Idea: Even if one is inclined to be a realist about everything, it is hard to see why our logic should be the determiner. Logic is supposed to formalize how we ought to reason, but whether or not we should be realists is a matter of philosophy, not logic.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 09.I)
     A reaction: Nice to hear a logician saying this. I do not see why talk in terms of an object is a commitment to its existence. We can discuss the philosopher's stone, or Arthur's sword, or the Loch Ness monster, or gravitinos, with degrees of commitment.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The facts of geometry, arithmetic or statics order themselves into theories [Hilbert]
     Full Idea: The facts of geometry order themselves into a geometry, the facts of arithmetic into a theory of numbers, the facts of statics, electrodynamics into a theory of statics, electrodynamics, or the facts of the physics of gases into a theory of gases.
     From: David Hilbert (Axiomatic Thought [1918], [03])
     A reaction: This is the confident (I would say 'essentialist') view of axioms, which received a bit of a setback with Gödel's Theorems. I certainly agree that the world proposes an order to us - we don't just randomly invent one that suits us.
Axioms must reveal their dependence (or not), and must be consistent [Hilbert]
     Full Idea: If a theory is to serve its purpose of orienting and ordering, it must first give us an overview of the independence and dependence of its propositions, and second give a guarantee of the consistency of all of the propositions.
     From: David Hilbert (Axiomatic Thought [1918], [09])
     A reaction: Gödel's Second theorem showed that the theory can never prove its own consistency, which made the second Hilbert requirement more difficult. It is generally assumed that each of the axioms must be independent of the others.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
To decide some questions, we must study the essence of mathematical proof itself [Hilbert]
     Full Idea: It is necessary to study the essence of mathematical proof itself if one wishes to answer such questions as the one about decidability in a finite number of operations.
     From: David Hilbert (Axiomatic Thought [1918], [53])
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
     Full Idea: The linearity of the equation of the plane and of the orthogonal transformation of point-coordinates is completely adequate to produce the whole broad science of spatial Euclidean geometry purely by means of analysis.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This remark comes from the man who succeeded in producing modern axioms for geometry (in 1897), so he knows what he is talking about. We should not be wholly pessimistic about Hilbert's ambitious projects. He had to dig deeper than this idea...
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Number theory just needs calculation laws and rules for integers [Hilbert]
     Full Idea: The laws of calculation and the rules of integers suffice for the construction of number theory.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This is the confident Hilbert view that the whole system can be fully spelled out. Gödel made this optimism more difficult.
7. Existence / D. Theories of Reality / 10. Vagueness / g. Degrees of vagueness
We could make our intuitions about heaps precise with a million-valued logic [Fisher]
     Full Idea: We could construct a 1,000,000-valued logic that would allow our intuitions concerning a heap to vary exactly with the amount of sand in the heap.
     From: Jennifer Fisher (On the Philosophy of Logic [2008])
     A reaction: Presumably only an infinite number of grains of sand would then produce a true heap, and even one grain would count as a bit of a heap, which must both be wrong, so I can't see this helping much.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vagueness can involve components (like baldness), or not (like boredom) [Fisher]
     Full Idea: Vague terms come in at least two different kinds: those whose constituent parts come in discrete packets (bald, rich, red) and those that don't (beauty, boredom, niceness).
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.II)
     A reaction: The first group seem to be features of the external world, and the second all occur in the mind. Baldness may be vague, but presumably hairs are (on the whole) not. Nature doesn't care whether someone is actually 'bald' or not.
10. Modality / B. Possibility / 1. Possibility
We can't explain 'possibility' in terms of 'possible' worlds [Fisher]
     Full Idea: Explaining 'it is possible that p' by saying p is true in at least one possible world doesn't get me very far. If I don't understand what possibility is, then appealing to possible worlds is not going to do me much good.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 06.III)
     A reaction: This seems so blatant that I assume friends of possible worlds will have addressed the problem. Note that you will also need to understand 'possible' to define necessity as 'true in all possible worlds'. Necessarily-p is not-possibly-not-p.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
If all truths are implied by a falsehood, then not-p might imply both q and not-q [Fisher]
     Full Idea: If all truths are implied by a falsehood, then 'if there are no trees in the park then there is no shade' and 'if there are no trees in the park there is plenty of shade' both come out as true. Intuitively, though, the second one is false.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 08.I)
     A reaction: The rule that a falsehood implies all truths must be the weakest idea in classical logic, if it actually implies a contradiction. This means we must take an interest in relevance logics.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
In relevance logic, conditionals help information to flow from antecedent to consequent [Fisher]
     Full Idea: A good account of relevance logic suggests that a conditional will be true when the flow of information is such that a conditional is the device that helps information to flow from the antecedent to the consequent.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 08.III)
     A reaction: Hm. 'If you are going out, you'll need an umbrella'. This passes on information about 'out', but also brings in new information. 'If you are going out, I'm leaving you'. What flows is an interpretation of the antecedent. Tricky.
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
By digging deeper into the axioms we approach the essence of sciences, and unity of knowedge [Hilbert]
     Full Idea: By pushing ahead to ever deeper layers of axioms ...we also win ever-deeper insights into the essence of scientific thought itself, and become ever more conscious of the unity of our knowledge.
     From: David Hilbert (Axiomatic Thought [1918], [56])
     A reaction: This is the less fashionable idea that scientific essentialism can also be applicable in the mathematic sciences, centring on the project of axiomatisation for logic, arithmetic, sets etc.