Combining Texts

All the ideas for 'fragments/reports', 'Cantorian Abstraction: Recon. and Defence' and 'Mathematics without Foundations'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We understand some statements about all sets [Putnam]
     Full Idea: We seem to understand some statements about all sets (e.g. 'for every set x and every set y, there is a set z which is the union of x and y').
     From: Hilary Putnam (Mathematics without Foundations [1967], p.308)
     A reaction: His example is the Axiom of Choice. Presumably this is why the collection of all sets must be referred to as a 'class', since we can talk about it, but cannot define it.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
I think of variables as objects rather than as signs [Fine,K]
     Full Idea: It is natural nowadays to think of variables as a certain kind of sign, but I wish to think of them as a certain kind of object.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §2)
     A reaction: Fine has a theory based on 'arbitrary objects', which is a rather charming idea. The cell of a spreadsheet is a kind of object, I suppose. A variable might be analogous to a point in space, where objects can locate themselves.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
I do not believe mathematics either has or needs 'foundations' [Putnam]
     Full Idea: I do not believe mathematics either has or needs 'foundations'.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Agreed that mathematics can function well without foundations (given that the enterprise got started with no thought for such things), the ontology of the subject still strikes me as a major question, though maybe not for mathematicians.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
It is conceivable that the axioms of arithmetic or propositional logic might be changed [Putnam]
     Full Idea: I believe that under certain circumstances revisions in the axioms of arithmetic, or even of the propositional calculus (e.g. the adoption of a modular logic as a way out of the difficulties in quantum mechanics), is fully conceivable.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: One can change the axioms of a system without necessarily changing the system (by swapping an axiom and a theorem). Especially if platonism is true, since the eternal objects reside calmly above our attempts to axiomatise them!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Maybe mathematics is empirical in that we could try to change it [Putnam]
     Full Idea: Mathematics might be 'empirical' in the sense that one is allowed to try to put alternatives into the field.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: He admits that change is highly unlikely. It take hardcore Millian arithmetic to be only changeable if pebbles start behaving very differently with regard to their quantities, which appears to be almost inconceivable.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Science requires more than consistency of mathematics [Putnam]
     Full Idea: Science demands much more of a mathematical theory than that it should merely be consistent, as the example of the various alternative systems of geometry dramatizes.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Well said. I don't agree with Putnam's Indispensability claims, but if an apparent system of numbers or lines has no application to the world then I don't consider it to be mathematics. It is a new game, like chess.
7. Existence / D. Theories of Reality / 4. Anti-realism
You can't deny a hypothesis a truth-value simply because we may never know it! [Putnam]
     Full Idea: Surely the mere fact that we may never know whether the continuum hypothesis is true or false is by itself just no reason to think that it doesn't have a truth value!
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: This is Putnam in 1967. Things changed later. Personally I am with the younger man all they way, but I reserve the right to totally change my mind.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
If green is abstracted from a thing, it is only seen as a type if it is common to many things [Fine,K]
     Full Idea: In traditional abstraction, the colour green merely has the intrinsic property of being green, other properties of things being abstracted away. But why should that be regarded as a type? It must be because the property is common to the instances.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §5)
     A reaction: A nice question which shows that the much-derided single act of abstraction is not sufficient to arrive at a concept, so that abstraction is a more complex matter (perhaps even a rational one) than simple empiricists believe.
18. Thought / E. Abstraction / 2. Abstracta by Selection
To obtain the number 2 by abstraction, we only want to abstract the distinctness of a pair of objects [Fine,K]
     Full Idea: In abstracting from the elements of a doubleton to obtain 2, we do not wish to abstract away from all features of the objects. We wish to take account of the fact that the two objects are distinct; this alone should be preserved under abstraction.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §3)
     A reaction: This is Fine's strategy for meeting Frege's objection to abstraction, summarised in Idea 9146. It seems to use the common sense idea that abstraction is not all-or-nothing. Abstraction has degrees (and levels).
We should define abstraction in general, with number abstraction taken as a special case [Fine,K]
     Full Idea: Number abstraction can be taken to be a special case of abstraction in general, which can then be defined without recourse to the concept of number.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §3)
     A reaction: At last, a mathematical logician recognising that they don't have a monopoly on abstraction. It is perfectly obvious that abstractions of simple daily concepts must be chronologically and logically prior to number abstraction. Number of what?
18. Thought / E. Abstraction / 8. Abstractionism Critique
After abstraction all numbers seem identical, so only 0 and 1 will exist! [Fine,K]
     Full Idea: In Cantor's abstractionist account there can only be two numbers, 0 and 1. For abs(Socrates) = abs(Plato), since their numbers are the same. So the number of {Socrates,Plato} is {abs(Soc),abs(Plato)}, which is the same number as {Socrates}!
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §1)
     A reaction: Fine tries to answer this objection, which arises from §45 of Frege's Grundlagen. Fine summarises that "indistinguishability without identity appears to be impossible". Maybe we should drop talk of numbers in terms of sets.
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?