Combining Texts

All the ideas for 'fragments/reports', 'Which Logic is the Right Logic?' and 'Modal Logic within Counterfactual Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
In S5 matters of possibility and necessity are non-contingent [Williamson]
     Full Idea: In system S5 matters of possibility and necessity are always non-contingent.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 3)
     A reaction: This will be because if something is possible in one world (because it can be seen to be true in some possible world) it will be possible for all worlds (since they can all see that world in S5).
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
     Full Idea: The main objection to the axiom of choice was that it had to be given by some law or definition, but since sets are arbitrary this seems irrelevant. Formalists consider it meaningless, but set-theorists consider it as true, and practically obvious.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
     Full Idea: One can distinguish at least two quite different senses of logic: as an instrument of demonstration, and perhaps as an instrument for the characterization of structures.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: This is trying to capture the proof-theory and semantic aspects, but merely 'characterizing' something sounds like a rather feeble aspiration for the semantic side of things. Isn't it to do with truth, rather than just rule-following?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
     Full Idea: Elementary logic cannot characterize the usual mathematical structures, but seems to be distinguished by its completeness.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
     Full Idea: The expressive power of second-order logic is too great to admit a proof procedure, but is adequate to express set-theoretical statements, and open questions such as the continuum hypothesis or the existence of big cardinals are easily stated.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
     Full Idea: In sentential logic there is a simple proof that all truth functions, of any number of arguments, are definable from (say) 'not' and 'and'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §0)
     A reaction: The point of 'say' is that it can be got down to two connectives, and these are just the usual preferred pair.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
     Full Idea: The symbols ∀ and ∃ may, to start with, be regarded as extrapolations of the truth functional connectives ∧ ('and') and ∨ ('or') to infinite domains.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §5)
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
     Full Idea: One might add to one's logic an 'uncountable quantifier', or a 'Chang quantifier', or a 'two-argument quantifier', or 'Shelah's quantifier', or 'branching quantifiers'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
     A reaction: [compressed - just listed for reference, if you collect quantifiers, like collecting butterflies]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
     Full Idea: Skolem deduced from the Löwenheim-Skolem theorem that 'the absolutist conceptions of Cantor's theory' are 'illusory'. I think it is clear that this conclusion would not follow even if elementary logic were in some sense the true logic, as Skolem assumed.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §7)
     A reaction: [Tharp cites Skolem 1962 p.47] Kit Fine refers to accepters of this scepticism about the arithmetic of infinities as 'Skolemites'.
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
     Full Idea: The Löwenheim-Skolem property seems to be undesirable, in that it states a limitation concerning the distinctions the logic is capable of making, such as saying there are uncountably many reals ('Skolem's Paradox').
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
     Full Idea: Soundness would seem to be an essential requirement of a proof procedure, since there is little point in proving formulas which may turn out to be false under some interpretation.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
     Full Idea: Putting completeness and compactness together, one has axiomatizability.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
     Full Idea: In general, if completeness fails there is no algorithm to list the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: I.e. the theory is not effectively enumerable.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
     Full Idea: It is strange that compactness is often ignored in discussions of philosophy of logic, since the most important theories have infinitely many axioms.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: An example of infinite axioms is the induction schema in first-order Peano Arithmetic.
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
     Full Idea: The compactness condition seems to state some weakness of the logic (as if it were futile to add infinitely many hypotheses). To look at it another way, formalizations of (say) arithmetic will admit of non-standard models.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
     Full Idea: A complete logic has an effective enumeration of the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
     Full Idea: Despite completeness, the mere existence of an effective enumeration of the valid formulas will not, by itself, provide knowledge. For example, one might be able to prove that there is an effective enumeration, without being able to specify one.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: The point is that completeness is supposed to ensure knowledge (of what is valid but unprovable), and completeness entails effective enumerability, but more than the latter is needed to do the key job.
10. Modality / A. Necessity / 1. Types of Modality
Necessity is counterfactually implied by its negation; possibility does not counterfactually imply its negation [Williamson]
     Full Idea: Modal thinking is logically equivalent to a type of counterfactual thinking. ...The necessary is that which is counterfactually implied by its own negation; the possible is that which does not counterfactually imply its own negation.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 1)
     A reaction: I really like this, because it builds modality on ordinary imaginative thinking. He says you just need to grasp counterfactuals, and also negation and absurdity, and you can then understand necessity and possibility. We can all do that.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Strict conditionals imply counterfactual conditionals: □(A⊃B)⊃(A□→B) [Williamson]
     Full Idea: The strict conditional implies the counterfactual conditional: □(A⊃B) ⊃ (A□→B) - suppose that A would not have held without B holding too; then if A had held, B would also have held.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 1)
     A reaction: [He then adds a reading of his formula in terms of possible worlds] This sounds rather close to modus ponens. If A implies B, and A is actually the case, what have you got? B!
10. Modality / B. Possibility / 9. Counterfactuals
Counterfactual conditionals transmit possibility: (A□→B)⊃(◊A⊃◊B) [Williamson]
     Full Idea: The counterfactual conditional transmits possibility: (A□→B) ⊃ (◊A⊃◊B). Suppose that if A had held, B would also have held; the if it is possible for A to hold, it is also possible for B to hold.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 1)
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Rather than define counterfactuals using necessity, maybe necessity is a special case of counterfactuals [Williamson, by Hale/Hoffmann,A]
     Full Idea: Instead of regarding counterfactuals as conditionals restricted to a range of possible worlds, we can define the necessity operator by means of counterfactuals. Metaphysical necessity is a special case of ordinary counterfactual thinking.
     From: report of Timothy Williamson (Modal Logic within Counterfactual Logic [2010]) by Bob Hale/ Aviv Hoffmann - Introduction to 'Modality' 2
     A reaction: [compressed] I very much like Williamson's approach, of basing these things on the ordinary way that ordinary people think. To me it is a welcome inclusion of psychology into metaphysics, which has been out in the cold since Frege.
15. Nature of Minds / C. Capacities of Minds / 2. Imagination
Imagination is important, in evaluating possibility and necessity, via counterfactuals [Williamson]
     Full Idea: Imagination can be made to look cognitively worthless. Once we recall its fallible but vital role in evaluating counterfactual conditionals, we should be more open to the idea that it plays such a role in evaluating claims of possibility and necessity.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 6)
     A reaction: I take this to be a really important idea, because it establishes the importance of imagination within the formal framework of modern analytic philosopher (rather than in the whimsy of poets and dreamers).
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?