Combining Texts

All the ideas for 'fragments/reports', 'Introduction to the Philosophy of Mathematics' and 'Thinking About Mechanisms'

unexpand these ideas     |    start again     |     specify just one area for these texts


35 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
7. Existence / B. Change in Existence / 2. Processes
Activities have place, rate, duration, entities, properties, modes, direction, polarity, energy and range [Machamer/Darden/Craver]
     Full Idea: Activities can be identified spatiotemporally, and individuated by rate, duration, and types of entity and property that engage in them. They also have modes of operation, directionality, polarity, energy requirements and a range.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: This is their attempt at making 'activity' one of the two central concepts of ontology, along with 'entity'. A helpful analysis. It just seems to be one way of slicing the cake.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Penicillin causes nothing; the cause is what penicillin does [Machamer/Darden/Craver]
     Full Idea: It is not the penicillin that causes the pneumonia to disappear, but what the penicillin does.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3.1)
     A reaction: This is a very neat example for illustrating how we slip into 'entity' talk, when the reality we are addressing actually concerns processes. Without the 'what it does', penicillin can't participate in causation at all.
11. Knowledge Aims / A. Knowledge / 2. Understanding
We understand something by presenting its low-level entities and activities [Machamer/Darden/Craver]
     Full Idea: The intelligibility of a phenomenon consists in the mechanisms being portrayed in terms of a field's bottom out entities and activities.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: In other words, we understand complex things by reducing them to things we do understand. It would, though, be illuminating to see a nest of interconnected activities, even if we understood none of them.
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
The explanation is not the regularity, but the activity sustaining it [Machamer/Darden/Craver]
     Full Idea: It is not regularities that explain but the activities that sustain the regularities.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: Good, but we had better not characterise the 'activities' in terms of regularities.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / h. Explanations by function
Functions are not properties of objects, they are activities contributing to mechanisms [Machamer/Darden/Craver]
     Full Idea: It is common to speak of functions as properties 'had by' entities, …but they should rather be understood in terms of the activities by virtue of which entities contribute to the workings of a mechanism.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: I'm certainly quite passionately in favour of cutting down on describing the world almost entirely in terms of entities which have properties. An 'activity', though, is a bit of an elusive concept.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Mechanisms are not just push-pull systems [Machamer/Darden/Craver]
     Full Idea: One should not think of mechanisms as exclusively mechanical (push-pull) systems.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: The difficulty seems to be that you could broaden the concept of 'mechanism' indefinitely, so that it covered history, mathematics, populations, cultural change, and even mathematics. Where to stop?
Mechanisms are systems organised to produce regular change [Machamer/Darden/Craver]
     Full Idea: Mechanisms are entities and activities organized such that they are productive of regular change from start or set-up to finish or termination conditions.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: This is their initial formal definition of a mechanism. Note that a mere 'activity' can be included. Presumably the mechanism might have an outcome that was not the intended outcome. Does a random element disqualify it? Are hands mechanisms?
A mechanism explains a phenomenon by showing how it was produced [Machamer/Darden/Craver]
     Full Idea: To give a description of a mechanism for a phenomenon is to explain that phenomenon, i.e. to explain how it was produced.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: To 'show how' something happens needs a bit of precisification. It is probably analytic that 'showing how' means 'revealing the mechanism', though 'mechanism' then becomes the tricky concept.
Our account of mechanism combines both entities and activities [Machamer/Darden/Craver]
     Full Idea: We emphasise the activities in mechanisms. This is explicitly dualist. Substantivalists speak of entities with dispositions to act. Process ontologists reify activities and try to reduce entities to processes. We try to capture both intuitions.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: [A quotation of selected fragments] The problem here seems to be the raising of an 'activity' to a central role in ontology, when it doesn't seem to be primitive, and will typically be analysed in a variety of ways.
Descriptions of explanatory mechanisms have a bottom level, where going further is irrelevant [Machamer/Darden/Craver]
     Full Idea: Nested hierachical descriptions of mechanisms typically bottom out in lowest level mechanisms. …Bottoming out is relative …the explanation comes to an end, and description of lower-level mechanisms would be irrelevant.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 5.1)
     A reaction: This seems to me exactly the right story about mechanism, and it is a story I am associating with essentialism. The relevance is ties to understanding. The lower level is either fully understood, or totally baffling.
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
14. Science / D. Explanation / 3. Best Explanation / b. Ultimate explanation
There are four types of bottom-level activities which will explain phenomena [Machamer/Darden/Craver]
     Full Idea: There are four bottom-out kinds of activities: geometrico-mechanical, electro-chemical, electro-magnetic and energetic. These are abstract means of production that can be fruitfully applied in particular cases to explain phenomena.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: I like that. It gives a nice core for a metaphysics for physicalists. I suspect that 'mechanical' can be reduced to something else, and that 'energetic' will disappear in the final story.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We can abstract by taking an exemplary case and ignoring the detail [Machamer/Darden/Craver]
     Full Idea: Abstractions may be constructed by taking an exemplary case or instance and removing detail.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 5.3)
     A reaction: I love 'removing detail'. That's it. Simple. I think this process is the basis of our whole capacity to formulate abstract concepts. Forget Frege - he's just describing the results of the process. How do we decide what is 'detail'? Essentialism!
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
Laws of nature have very little application in biology [Machamer/Darden/Craver]
     Full Idea: The traditional notion of a law of nature has few, if any, applications in neurobiology or molecular biology.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3.2)
     A reaction: This is a simple and self-evident fact, and bad news for anyone who want to build their entire ontology around laws of nature. I take such a notion to be fairly empty, except as a convenient heuristic device.