Combining Texts

All the ideas for 'fragments/reports', 'Believing the Axioms I' and 'Change in View: Principles of Reasoning'

unexpand these ideas     |    start again     |     specify just one area for these texts


22 ideas

2. Reason / A. Nature of Reason / 1. On Reason
It is a principle of reasoning not to clutter your mind with trivialities [Harman]
     Full Idea: I am assuming the following principle: Clutter Avoidance - in reasoning, one should not clutter one's mind with trivialities.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: I like Harman's interest in the psychology of reasoning. In the world of Frege, it is taboo to talk about psychology.
The rules of reasoning are not the rules of logic [Harman]
     Full Idea: Rules of deduction are rules of deductive argument; they are not rules of inference or reasoning.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 1)
     A reaction: And I have often noticed that good philosophing reasoners and good logicians are frequently not the same people.
If there is a great cost to avoiding inconsistency, we learn to reason our way around it [Harman]
     Full Idea: We sometimes discover our views are inconsistent and do not know how to revise them in order to avoid inconsistency without great cost. The best response may be to keep the inconsistency and try to avoid inferences that exploit it.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: Any decent philosopher should face this dilemma regularly. I assume non-philosophers don't compare the different compartments of their beliefs very much. Students of non-monotonic logics are trying to formalise such thinking.
Logic has little relevance to reasoning, except when logical conclusions are immediate [Harman]
     Full Idea: Although logic does not seem specially relevant to reasoning, immediate implication and immediate inconsistency do seem important for reasoning.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: Ordinary thinkers can't possibly track complex logical implications, so we have obviously developed strategies for coping. I assume formal logic is contructed from the basic ingredients of the immediate and obvious implications, such as modus ponens.
2. Reason / A. Nature of Reason / 4. Aims of Reason
Implication just accumulates conclusions, but inference may also revise our views [Harman]
     Full Idea: Implication is cumulative, in a way that inference may not be. In argument one accumulates conclusions; things are always added, never subtracted. Reasoned revision, however, can subtract from one's view as well as add.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 1)
     A reaction: This has caught Harman's attention, I think (?), because he is looking for non-monotonic reasoning (i.e. revisable reasoning) within a classical framework. If revision is responding to evidence, the logic can remain conventional.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
New axioms are being sought, to determine the size of the continuum [Maddy]
     Full Idea: In current set theory, the search is on for new axioms to determine the size of the continuum.
     From: Penelope Maddy (Believing the Axioms I [1988], §0)
     A reaction: This sounds the wrong way round. Presumably we seek axioms that fix everything else about set theory, and then check to see what continuum results. Otherwise we could just pick our continuum, by picking our axioms.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
     Full Idea: Most writers agree that if any sense can be made of the distinction between analytic and synthetic, then the Axiom of Extensionality should be counted as analytic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [Boolos is the source of the idea] In other words Extensionality is not worth discussing, because it simply tells you what the world 'set' means, and there is no room for discussion about that. The set/class called 'humans' varies in size.
Extensional sets are clearer, simpler, unique and expressive [Maddy]
     Full Idea: The extensional view of sets is preferable because it is simpler, clearer, and more convenient, because it individuates uniquely, and because it can simulate intensional notions when the need arises.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [She cites Fraenkel, Bar-Hillet and Levy for this] The difficulty seems to be whether the extensional notion captures our ordinary intuitive notion of what constitutes a group of things, since that needs flexible size and some sort of unity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
     Full Idea: The Axiom of Infinity is a simple statement of Cantor's great breakthrough. His bold hypothesis that a collection of elements that had lurked in the background of mathematics could be infinite launched modern mathematics.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: It also embodies one of those many points where mathematics seems to depart from common sense - but then most subjects depart from common sense when they get more sophisticated. Look what happened to art.
Infinite sets are essential for giving an account of the real numbers [Maddy]
     Full Idea: If one is interested in analysis then infinite sets are indispensable since even the notion of a real number cannot be developed by means of finite sets alone.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: [Maddy is citing Fraenkel, Bar-Hillel and Levy] So Cantor's great breakthrough (Idea 13021) actually follows from the earlier acceptance of the real numbers, so that's where the departure from common sense started.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
     Full Idea: The Power Set Axiom is indispensable for a set-theoretic account of the continuum, ...and in so far as those attempts are successful, then the power-set principle gains some confirmatory support.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.6)
     A reaction: The continuum is, of course, notoriously problematic. Have we created an extra problem in our attempts at solving the first one?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
     Full Idea: Jordain made consistent and ill-starred efforts to prove the Axiom of Choice.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This would appear to be the fate of most axioms. You would presumably have to use a different system from the one you are engaged with to achieve your proof.
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
     Full Idea: Resistance to the Axiom of Choice centred on opposition between existence and construction. Modern set theory thrives on a realistic approach which says the choice set exists, regardless of whether it can be defined, constructed, or given by a rule.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This seems to be a key case for the ontology that lies at the heart of theory. Choice seems to be an invaluable tool for proofs, so it won't go away, so admit it to the ontology. Hm. So the tools of thought have existence?
A large array of theorems depend on the Axiom of Choice [Maddy]
     Full Idea: Many theorems depend on the Axiom of Choice, including that a countable union of sets is countable, and results in analysis, topology, abstract algebra and mathematical logic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: The modern attitude seems to be to admit anything if it leads to interesting results. It makes you wonder about the modern approach of using mathematics and logic as the cutting edges of ontological thinking.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
     Full Idea: The Iterative Conception (Zermelo 1930) says everything appears at some stage. Given two objects a and b, let A and B be the stages at which they first appear. Suppose B is after A. Then the pair set of a and b appears at the immediate stage after B.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: Presumably this all happens in 'logical time' (a nice phrase I have just invented!). I suppose we might say that the existence of the paired set is 'forced' by the preceding sets. No transcendental inferences in this story?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
     Full Idea: The 'limitation of size' is a vague intuition, based on the idea that being too large may generate the paradoxes.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: This is an intriguing idea to be found right at the centre of what is supposed to be an incredibly rigorous system.
10. Modality / B. Possibility / 6. Probability
The Gambler's Fallacy (ten blacks, so red is due) overemphasises the early part of a sequence [Harman]
     Full Idea: The Gambler's Fallacy says if black has come up ten times in a row, red must be highly probable next time. It overlooks how the impact of an initial run of one color can become more and more insignificant as the sequence gets longer.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 1)
     A reaction: At what point do you decide that the roulette wheel is fixed, rather than that you have fallen for the Gambler's Fallacy? Interestingly, standard induction points to the opposite conclusion. But then you have prior knowledge of the wheel.
High probability premises need not imply high probability conclusions [Harman]
     Full Idea: Propositions that are individually highly probable can have an immediate implication that is not. The fact that one can assign a high probability to P and also to 'if P then Q' is not sufficient reason to assign high probability to Q.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 3)
     A reaction: He cites Kyburg's Lottery Paradox. It is probable that there is a winning ticket, and that this ticket is not it. Thus it is NOT probable that I will win.
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
We strongly desire to believe what is true, even though logic does not require it [Harman]
     Full Idea: Moore's Paradox: one is strongly disposed not to believe both P and that one does not believe that P, while realising that these propositions are perfectly consistent with one another.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: [Where in Moore?] A very nice example of a powerful principle of reasoning which can never be captured in logic.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
In revision of belief, we need to keep track of justifications for foundations, but not for coherence [Harman]
     Full Idea: The key issue in belief revision is whether one needs to keep track of one's original justifications for beliefs. What I am calling the 'foundations' theory says yes; what I am calling the 'coherence' theory says no.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 4)
     A reaction: I favour coherence in all things epistemological, and this idea seems to match real life, where I am very confident of many beliefs of which I have forgotten the justification. Harman says coherentists need the justification only when they doubt a belief.
Coherence is intelligible connections, especially one element explaining another [Harman]
     Full Idea: Coherence in a view consists in connections of intelligibility among the elements of the view. Among other things these included explanatory connections, which hold when part of one's view makes it intelligible why some other part should be true.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 7)
     A reaction: Music to my ears. I call myself an 'explanatory empiricist', and embrace a coherence theory of justification. This is the framework within which philosophy should be practised. Harman is our founder, and Paul Thagard our guru.
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?