Combining Texts

All the ideas for 'fragments/reports', 'Defending the Axioms' and 'First-Order Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is the study of sound argument, or of certain artificial languages (or applying the latter to the former) [Hodges,W]
     Full Idea: A logic is a collection of closely related artificial languages, and its older meaning is the study of the rules of sound argument. The languages can be used as a framework for studying rules of argument.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.1)
     A reaction: [Hodges then says he will stick to the languages] The suspicion is that one might confine the subject to the artificial languages simply because it is easier, and avoids the tricky philosophical questions. That approximates to computer programming.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
A formula needs an 'interpretation' of its constants, and a 'valuation' of its variables [Hodges,W]
     Full Idea: To have a truth-value, a first-order formula needs an 'interpretation' (I) of its constants, and a 'valuation' (ν) of its variables. Something in the world is attached to the constants; objects are attached to variables.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
There are three different standard presentations of semantics [Hodges,W]
     Full Idea: Semantic rules can be presented in 'Tarski style', where the interpretation-plus-valuation is reduced to the same question for simpler formulas, or the 'Henkin-Hintikka style' in terms of games, or the 'Barwise-Etchemendy style' for computers.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
     A reaction: I haven't yet got the hang of the latter two, but I note them to map the territory.
I |= φ means that the formula φ is true in the interpretation I [Hodges,W]
     Full Idea: I |= φ means that the formula φ is true in the interpretation I.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.5)
     A reaction: [There should be no space between the vertical and the two horizontals!] This contrasts with |-, which means 'is proved in'. That is a syntactic or proof-theoretic symbol, whereas |= is a semantic symbol (involving truth).
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Down Löwenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
     Full Idea: Downward Löwenheim-Skolem (the weakest form): If L is a first-order language with at most countably many formulas, and T is a consistent theory in L. Then T has a model with at most countably many elements.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
Up Löwenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
     Full Idea: Upward Löwenheim-Skolem: every first-order theory with infinite models has arbitrarily large models.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
5. Theory of Logic / K. Features of Logics / 6. Compactness
If a first-order theory entails a sentence, there is a finite subset of the theory which entails it [Hodges,W]
     Full Idea: Compactness Theorem: suppose T is a first-order theory, ψ is a first-order sentence, and T entails ψ. Then there is a finite subset U of T such that U entails ψ.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
     A reaction: If entailment is possible, it can be done finitely.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
A 'set' is a mathematically well-behaved class [Hodges,W]
     Full Idea: A 'set' is a mathematically well-behaved class.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.6)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?