Combining Texts

All the ideas for 'Sweet Dreams', 'On Second-Order Logic' and 'Process and Reality'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / c. Classical philosophy
European philosophy consists of a series of footnotes to Plato [Whitehead]
     Full Idea: The safest general characterization of the European philosophical tradition is that it consists of a series of footnotes to Plato.
     From: Alfred North Whitehead (Process and Reality [1929], p.39)
     A reaction: Outsiders think this is a ridiculous remark, but readers of Plato can only be struck by what a wonderful tribute Whitehead has come up with. I would say that at least 80% of this database deals with problems which were discussed at length by Plato.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
     Full Idea: Boolos's conception of plural logic is as a reinterpretation of second-order logic.
     From: report of George Boolos (On Second-Order Logic [1975]) by Oliver,A/Smiley,T - What are Sets and What are they For? n5
     A reaction: Oliver and Smiley don't accept this view, and champion plural reference differently (as, I think, some kind of metalinguistic device?).
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
     Full Idea: The metatheory of second-order logic is hopelessly set-theoretic, and the notion of second-order validity possesses many if not all of the epistemic debilities of the notion of set-theoretic truth.
     From: George Boolos (On Second-Order Logic [1975], p.45)
     A reaction: Epistemic problems arise when a logic is incomplete, because some of the so-called truths cannot be proved, and hence may be unreachable. This idea indicates Boolos's motivation for developing a theory of plural quantification.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
     Full Idea: One may be of the opinion that no sentence ought to be considered as a truth of logic if, no matter how it is interpreted, it asserts that there are sets of certain sorts.
     From: George Boolos (On Second-Order Logic [1975], p.44)
     A reaction: My intuition is that in no way should any proper logic assert the existence of anything at all. Presumably interpretations can assert the existence of numbers or sets, but we should be able to identify something which is 'pure' logic. Natural deduction?
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
With 'extensive connection', boundary elements are not included in domains [Whitehead, by Varzi]
     Full Idea: In Whitehead's theory of extensive connection, no boundary elements are included in the domain of quantification. ...His conception of space contains no parts of lower dimensions, such as points or boundary elements.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Achille Varzi - Mereology 3.1
     A reaction: [Varzi says we should see B.L.Clarke 1981 for a rigorous formulation. Second half of the Idea is Varzi p.21]
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
     Full Idea: One may say that '∀x x=x' means 'everything is identical to itself', but one must realise that one's answer has a determinate sense only if the reference (range) of 'everything' is fixed.
     From: George Boolos (On Second-Order Logic [1975], p.46)
     A reaction: This is the problem now discussed in the recent book 'Absolute Generality', of whether one can quantify without specifying a fixed or limited domain.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
     Full Idea: A weak completeness theorem shows that a sentence is provable whenever it is valid; a strong theorem, that a sentence is provable from a set of sentences whenever it is a logical consequence of the set.
     From: George Boolos (On Second-Order Logic [1975], p.52)
     A reaction: So the weak version says |- φ → |= φ, and the strong versions says Γ |- φ → Γ |= φ. Presumably it is stronger if it can specify the source of the inference.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
     Full Idea: Boolos asks why on earth compactness, whatever its virtues, should be definitive of logic itself.
     From: report of George Boolos (On Second-Order Logic [1975]) by Ian Hacking - What is Logic? §13
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
     Full Idea: The notions of infinity and countability can be characterized by second-order sentences, though not by first-order sentences (as compactness and Skolem-Löwenheim theorems show), .. as well as well-ordering, progression, ancestral and identity.
     From: George Boolos (On Second-Order Logic [1975], p.48)
7. Existence / B. Change in Existence / 2. Processes
In Whitehead 'processes' consist of events beginning and ending [Whitehead, by Simons]
     Full Idea: There are no items in Whitehead's ontology called 'processes'. Rather, the term 'process' refers to the way in which the basic things - which are still events - come into existence and cease to exist. Whitehead called this 'becoming'.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Peter Simons - Whitehead: process and cosmology 'The mature'
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
Obviously there can't be a functional anaylsis of qualia if they are defined by intrinsic properties [Dennett]
     Full Idea: If you define qualia as intrinsic properties of experiences considered in isolation from all their causes and effects, logically independent of all dispositional properties, then they are logically guaranteed to elude all broad functional analysis.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.8)
     A reaction: This is a good point - it seems daft to reify qualia and imagine them dangling in mid-air with all their vibrant qualities - but that is a long way from saying there is nothing more to qualia than functional roles. Functions must be exlained too.
16. Persons / E. Rejecting the Self / 4. Denial of the Self
The work done by the 'homunculus in the theatre' must be spread amongst non-conscious agencies [Dennett]
     Full Idea: All the work done by the imagined homunculus in the Cartesian Theater must be distributed among various lesser agencies in the brain, none of which is conscious.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: Dennett's account crucially depends on consciousness being much more fragmentary than most philosophers claim it to be. It is actually full of joints, which can come apart. He may be right.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Intelligent agents are composed of nested homunculi, of decreasing intelligence, ending in machines [Dennett]
     Full Idea: As long as your homunculi are more stupid and ignorant than the intelligent agent they compose, the nesting of homunculi within homunculi can be finite, bottoming out, eventually, with agents so unimpressive they can be replaced by machines.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.6)
     A reaction: [Dennett first proposed this in 'Brainstorms' 1978]. This view was developed well by Lycan. I rate it as one of the most illuminating ideas in the modern philosophy of mind. All complex systems (like aeroplanes) have this structure.
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
I don't deny consciousness; it just isn't what people think it is [Dennett]
     Full Idea: I don't maintain, of course, that human consciousness does not exist; I maintain that it is not what people often think it is.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: I consider Dennett to be as near as you can get to an eliminativist, but he is not stupid. As far as I can see, the modern philosopher's bogey-man, the true total eliminativist, simply doesn't exist. Eliminativists usually deny propositional attitudes.
18. Thought / B. Mechanics of Thought / 6. Artificial Thought / a. Artificial Intelligence
What matters about neuro-science is the discovery of the functional role of the chemistry [Dennett]
     Full Idea: Neuro-science matters because - and only because - we have discovered that the many different neuromodulators and other chemical messengers that diffuse throughout the brain have functional roles that make important differences.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.1)
     A reaction: I agree with Dennett that this is the true ground for pessimism about spectacular breakthroughs in artificial intelligence, rather than abstract concerns about irreducible features of the mind like 'qualia' and 'rationality'.
26. Natural Theory / C. Causation / 1. Causation
Whitehead held that perception was a necessary feature of all causation [Whitehead, by Harré/Madden]
     Full Idea: On Whitehead's view, not only is a volitional sense of 'causal power' projected on to physical events, but 'perception in the causal mode' is literally ascribed to them.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Harré,R./Madden,E.H. - Causal Powers 3.II
     A reaction: This seems to be a close relative of Leibniz's monads. 'Perception' is a daft word for it, but in some way everything is 'responsive' to the things adjacent to it.
27. Natural Reality / C. Space / 3. Points in Space
Whitehead replaced points with extended regions [Whitehead, by Quine]
     Full Idea: Whitehead tried to avoid points, and make do with extended regions and sets of regions.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Willard Quine - Existence and Quantification p.93