Combining Texts

All the ideas for 'Sweet Dreams', 'On the Cosmos (lost)' and 'Higher-Order Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
     Full Idea: Full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
     A reaction: [he credits Cowles for this remark] Having an unworkable model theory sounds pretty serious to me, as I'm not inclined to be interested in languages which don't produce models of some sort. Surely models are the whole point?
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
     Full Idea: In studying second-order logic one can think of relations and functions as extensional or intensional, or one can leave it open. Little turns on this here, and so words like 'property', 'class', and 'set' are used interchangeably.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.2.1)
     A reaction: Important. Students of the metaphysics of properties, who arrive with limited experience of logic, are bewildered by this attitude. Note that the metaphysics is left wide open, so never let logicians hijack the metaphysical problem of properties.
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
No things would be clear to us as entity or relationships unless there existed Number and its essence [Philolaus]
     Full Idea: No existing things would be clear to anyone, either in themselves or in their relationship to one another, unless there existed Number and its essence.
     From: Philolaus (On the Cosmos (lost) [c.435 BCE], B11), quoted by John Stobaeus - Anthology 1.03.8
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
Obviously there can't be a functional anaylsis of qualia if they are defined by intrinsic properties [Dennett]
     Full Idea: If you define qualia as intrinsic properties of experiences considered in isolation from all their causes and effects, logically independent of all dispositional properties, then they are logically guaranteed to elude all broad functional analysis.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.8)
     A reaction: This is a good point - it seems daft to reify qualia and imagine them dangling in mid-air with all their vibrant qualities - but that is a long way from saying there is nothing more to qualia than functional roles. Functions must be exlained too.
16. Persons / E. Rejecting the Self / 4. Denial of the Self
The work done by the 'homunculus in the theatre' must be spread amongst non-conscious agencies [Dennett]
     Full Idea: All the work done by the imagined homunculus in the Cartesian Theater must be distributed among various lesser agencies in the brain, none of which is conscious.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: Dennett's account crucially depends on consciousness being much more fragmentary than most philosophers claim it to be. It is actually full of joints, which can come apart. He may be right.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Intelligent agents are composed of nested homunculi, of decreasing intelligence, ending in machines [Dennett]
     Full Idea: As long as your homunculi are more stupid and ignorant than the intelligent agent they compose, the nesting of homunculi within homunculi can be finite, bottoming out, eventually, with agents so unimpressive they can be replaced by machines.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.6)
     A reaction: [Dennett first proposed this in 'Brainstorms' 1978]. This view was developed well by Lycan. I rate it as one of the most illuminating ideas in the modern philosophy of mind. All complex systems (like aeroplanes) have this structure.
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
I don't deny consciousness; it just isn't what people think it is [Dennett]
     Full Idea: I don't maintain, of course, that human consciousness does not exist; I maintain that it is not what people often think it is.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: I consider Dennett to be as near as you can get to an eliminativist, but he is not stupid. As far as I can see, the modern philosopher's bogey-man, the true total eliminativist, simply doesn't exist. Eliminativists usually deny propositional attitudes.
18. Thought / B. Mechanics of Thought / 6. Artificial Thought / a. Artificial Intelligence
What matters about neuro-science is the discovery of the functional role of the chemistry [Dennett]
     Full Idea: Neuro-science matters because - and only because - we have discovered that the many different neuromodulators and other chemical messengers that diffuse throughout the brain have functional roles that make important differences.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.1)
     A reaction: I agree with Dennett that this is the true ground for pessimism about spectacular breakthroughs in artificial intelligence, rather than abstract concerns about irreducible features of the mind like 'qualia' and 'rationality'.
26. Natural Theory / A. Speculations on Nature / 4. Mathematical Nature
Everything must involve numbers, or it couldn't be thought about or known [Philolaus]
     Full Idea: Everything which is known has number, because otherwise it is impossible for anything to be the object of thought or knowledge.
     From: Philolaus (On the Cosmos (lost) [c.435 BCE], B04), quoted by John Stobaeus - Anthology 1.21.7b
Harmony must pre-exist the cosmos, to bring the dissimilar sources together [Philolaus]
     Full Idea: It would have been impossible for the dissimilar and incompatible sources to have been made into an orderly universe unless harmony had been present in some form or other.
     From: Philolaus (On the Cosmos (lost) [c.435 BCE], B06), quoted by John Stobaeus - Anthology 1.21.7d
There is no falsehood in harmony and number, only in irrational things [Philolaus]
     Full Idea: The nature of number and harmony admits of no falsehood; for this is unrelated to them. Falsehood and envy belong to the nature of the Unlimited and the Unintelligent and the Irrational.
     From: Philolaus (On the Cosmos (lost) [c.435 BCE], B11), quoted by (who?) - where?
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
Existing things, and hence the Cosmos, are a mixture of the Limited and the Unlimited [Philolaus]
     Full Idea: Since it is plain that existing things are neither wholly from the Limiting, nor wholly from the Unlimited, clearly the cosmos and its contents were fitted together from both the Limiting and the Unlimited.
     From: Philolaus (On the Cosmos (lost) [c.435 BCE], B02), quoted by John Stobaeus - Anthology 1.21.7a
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
Self-created numbers make the universe stable [Philolaus]
     Full Idea: Number is the ruling and self-created bond which maintains the everlasting stability of the contents of the universe.
     From: Philolaus (On the Cosmos (lost) [c.435 BCE], B23), quoted by (who?) - where?
27. Natural Reality / E. Cosmology / 1. Cosmology
Philolaus was the first person to say the earth moves in a circle [Philolaus, by Diog. Laertius]
     Full Idea: Philolaus was the first person to affirm that the earth moves in a circle.
     From: report of Philolaus (On the Cosmos (lost) [c.435 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.Ph.3