Combining Texts

All the ideas for 'Brainstorms:Essays on Mind and Psychology', 'Contextualist Solutions to Scepticism' and 'Introduction to the Theory of Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


22 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
     Full Idea: We can define a set by 'enumeration' (by listing the items, within curly brackets), or by 'abstraction' (by specifying the elements as instances of a property), pretending that they form a determinate totality. The latter is written {x | x is P}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
     Full Idea: The 'Cartesian Product' of two sets, written A x B, is the relation which pairs every element of A with every element of B. So A x B = { | x ∈ A and y ∈ B}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
     Full Idea: A binary relation in a set is a 'partial ordering' just in case it is reflexive, antisymmetric and transitive.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Determinacy: an object is either in a set, or it isn't [Zalabardo]
     Full Idea: Principle of Determinacy: For every object a and every set S, either a is an element of S or a is not an element of S.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: Determinate totals of objects always make a set [Zalabardo]
     Full Idea: Principle of Specification: Whenever we can specify a determinate totality of objects, we shall say that there is a set whose elements are precisely the objects that we have specified.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
     A reaction: Compare the Axiom of Specification. Zalabardo says we may wish to consider sets of which we cannot specify the members.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
A first-order 'sentence' is a formula with no free variables [Zalabardo]
     Full Idea: A formula of a first-order language is a 'sentence' just in case it has no free variables.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.2)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ |= φ if φ is true when all of Γ is true, for all structures and interpretations [Zalabardo]
     Full Idea: A formula is the 'logical consequence' of a set of formulas (Γ |= φ) if for every structure in the language and every variable interpretation of the structure, if all the formulas within the set are true and the formula itself is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
Γ |= φ for sentences if φ is true when all of Γ is true [Zalabardo]
     Full Idea: A propositional logic sentence is a 'logical consequence' of a set of sentences (written Γ |= φ) if for every admissible truth-assignment all the sentences in the set Γ are true, then φ is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: The definition is similar for predicate logic.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
Propositional logic just needs ¬, and one of ∧, ∨ and → [Zalabardo]
     Full Idea: In propositional logic, any set containing ¬ and at least one of ∧, ∨ and → is expressively complete.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.8)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
The semantics shows how truth values depend on instantiations of properties and relations [Zalabardo]
     Full Idea: The semantic pattern of a first-order language is the ways in which truth values depend on which individuals instantiate the properties and relations which figure in them. ..So we pair a truth value with each combination of individuals, sets etc.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.3)
     A reaction: So truth reduces to a combination of 'instantiations', which is rather like 'satisfaction'.
We can do semantics by looking at given propositions, or by building new ones [Zalabardo]
     Full Idea: We can look at semantics from the point of view of how truth values are determined by instantiations of properties and relations, or by asking how we can build, using the resources of the language, a proposition corresponding to a given semantic pattern.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
     A reaction: The second version of semantics is model theory.
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
We make a truth assignment to T and F, which may be true and false, but merely differ from one another [Zalabardo]
     Full Idea: A truth assignment is a function from propositions to the set {T,F}. We will think of T and F as the truth values true and false, but for our purposes all we need to assume about the identity of these objects is that they are different from each other.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: Note that T and F are 'objects'. This remark is important in understanding modern logical semantics. T and F can be equated to 1 and 0 in the language of a computer. They just mean as much as you want them to mean.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logically true sentences are true in all structures [Zalabardo]
     Full Idea: In first-order languages, logically true sentences are true in all structures.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
'Logically true' (|= φ) is true for every truth-assignment [Zalabardo]
     Full Idea: A propositional logic sentence is 'logically true', written |= φ, if it is true for every admissible truth-assignment.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
     Full Idea: A set of formulas of a first-order language is 'satisfiable' if there is a structure and a variable interpretation in that structure such that all the formulas of the set are true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
     Full Idea: A propositional logic set of sentences Γ is 'satisfiable' if there is at least one admissible truth-assignment that makes all of its sentences true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
     Full Idea: A structure is a model of a sentence if the sentence is true in the model; a structure is a model of a set of sentences if they are all true in the structure.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
If a set is defined by induction, then proof by induction can be applied to it [Zalabardo]
     Full Idea: Defining a set by induction enables us to use the method of proof by induction to establish that all the elements of the set have a certain property.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.3)
13. Knowledge Criteria / C. External Justification / 6. Contextual Justification / a. Contextualism
Contextualism needs a semantics for knowledge sentences that are partly indexical [Schiffer,S]
     Full Idea: Contextualist semantics must capture the 'indexical' nature of knowledge claims, the fact that different utterances of a knowledge sentence with no apparent indexical terms can express different propositions.
     From: Stephen Schiffer (Contextualist Solutions to Scepticism [1996], p.325), quoted by Keith DeRose - The Case for Contextualism 1.5
     A reaction: Schiffer tries to show that this is too difficult, and DeRose defends contextualism against the charge.
The indexical aspect of contextual knowledge might be hidden, or it might be in what 'know' means [Schiffer,S]
     Full Idea: One might have a 'hidden-indexical' theory of knowledge sentences: they contain constituents that are not the semantic values of any terms; ...or 'to know' itself might be indexical, as in 'I know[easy] I have hands' or 'I know[tough] I have hands'.
     From: Stephen Schiffer (Contextualist Solutions to Scepticism [1996], p.326-7), quoted by Keith DeRose - The Case for Contextualism 1.5
     A reaction: [very compressed] Given the choice, I would have thought it was in 'know', since to say 'either you know p or you don't' sounds silly to me.
15. Nature of Minds / B. Features of Minds / 4. Intentionality / b. Intentionality theories
Theories of intentionality presuppose rationality, so can't explain it [Dennett]
     Full Idea: Intentional theory is vacuous as psychology because it presupposes and does not explain rationality or intelligence.
     From: Daniel C. Dennett (Brainstorms:Essays on Mind and Psychology [1978], p.15?)
     A reaction: Virtually every philosophical theory seems to founder because it presupposes something like the thing it is meant to explain. I agree that 'intentionality' is a slightly airy concept that would probably reduce to something better.
17. Mind and Body / B. Behaviourism / 3. Intentional Stance
Beliefs and desires aren't real; they are prediction techniques [Dennett]
     Full Idea: Intentional systems don't really have beliefs and desires, but one can explain and predict their behaviour by ascribing beliefs and desires to them. This strategy is pragmatic, not right or wrong.
     From: Daniel C. Dennett (Brainstorms:Essays on Mind and Psychology [1978], p.7?)
     A reaction: If the ascription of beliefs and desires explains behaviour, then that is good grounds for thinking they might be real features of the brain, and even if that is not so, they are real enough as abstractions from brain events, like the 'economic climate'.