Combining Texts

All the ideas for 'Sweet Dreams', 'The Ways of Paradox' and 'Frege versus Cantor and Dedekind'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Analytic philosophy focuses too much on forms of expression, instead of what is actually said [Tait]
     Full Idea: The tendency to attack forms of expression rather than attempting to appreciate what is actually being said is one of the more unfortunate habits that analytic philosophy inherited from Frege.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IV)
     A reaction: The key to this, I say, is to acknowledge the existence of propositions (in brains). For example, this belief will make teachers more sympathetic to pupils who are struggling to express an idea, and verbal nit-picking becomes totally irrelevant.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null set was doubted, because numbering seemed to require 'units' [Tait]
     Full Idea: The conception that what can be numbered is some object (including flocks of sheep) relative to a partition - a choice of unit - survived even in the late nineteenth century in the form of the rejection of the null set (and difficulties with unit sets).
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IX)
     A reaction: This old view can't be entirely wrong! Frege makes the point that if asked to count a pack of cards, you must decide whether to count cards, or suits, or pips. You may not need a 'unit', but you need a concept. 'Units' name concept-extensions nicely!
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The set scheme discredited by paradoxes is actually the most natural one [Quine]
     Full Idea: Each proposed revision of set theory is unnatural, because the natural scheme is the unrestricted one that the antinomies discredit.
     From: Willard Quine (The Ways of Paradox [1961], p.16)
     A reaction: You can either takes this free-far-all version of set theory, and gradually restrain it for each specific problem, or start from scratch and build up in safe steps. The latter is (I think) the 'iterated' approach.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
We can have a series with identical members [Tait]
     Full Idea: Why can't we have a series (as opposed to a linearly ordered set) all of whose members are identical, such as (a, a, a...,a)?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VII)
     A reaction: The question is whether the items order themselves, which presumably the natural numbers are supposed to do, or whether we impose the order (and length) of the series. What decides how many a's there are? Do we order, or does nature?
Russell's antinomy challenged the idea that any condition can produce a set [Quine]
     Full Idea: In the case of Russell's antinomy, the tacit and trusted pattern of reasoning that is found wanting is this: for any condition you can formulate, there is a class whose members are the things meeting the condition.
     From: Willard Quine (The Ways of Paradox [1961], p.11)
     A reaction: This is why Russell's Paradox is so important for set theory, which in turn makes it important for the foundations of mathematics.
5. Theory of Logic / L. Paradox / 3. Antinomies
Antinomies contradict accepted ways of reasoning, and demand revisions [Quine]
     Full Idea: An 'antinomy' produces a self-contradiction by accepted ways of reasoning. It establishes that some tacit and trusted pattern of reasoning must be made explicit and henceforward be avoided or revised.
     From: Willard Quine (The Ways of Paradox [1961], p.05)
     A reaction: Quine treats antinomies as of much greater importance than mere paradoxes. It is often possible to give simple explanations of paradoxes, but antinomies go to the root of our belief system. This was presumably Kant's intended meaning.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Whenever the pursuer reaches the spot where the pursuer has been, the pursued has moved on [Quine]
     Full Idea: The Achilles argument is that (if the front runner keeps running) each time the pursuer reaches a spot where the pursuer has been, the pursued has moved a bit beyond.
     From: Willard Quine (The Ways of Paradox [1961], p.03)
     A reaction: Quine is always wonderfully lucid, and this is the clearest simple statement of the paradox.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
A barber shaves only those who do not shave themselves. So does he shave himself? [Quine]
     Full Idea: In a certain village there is a barber, who shaves all and only those men in the village who do not shave themselves. So does the barber shave himself? The barber shaves himself if and only if he does not shave himself.
     From: Willard Quine (The Ways of Paradox [1961], p.02)
     A reaction: [Russell himself quoted this version of his paradox, from an unnamed source] Quine treats his as trivial because it only concerns barbers, but the full Russell paradox is a major 'antinomy', because it concerns sets.
Membership conditions which involve membership and non-membership are paradoxical [Quine]
     Full Idea: With Russell's antinomy, ...each tie the trouble comes of taking a membership condition that itself talks in turn of membership and non-membership.
     From: Willard Quine (The Ways of Paradox [1961], p.13)
     A reaction: Hence various stipulations to rule out vicious circles or referring to sets of the 'wrong type' are invoked to cure the problem. The big question is how strong to make the restrictions.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If we write it as '"this sentence is false" is false', there is no paradox [Quine]
     Full Idea: If we supplant the sentence 'this sentence is false' with one saying what it refers to, we get '"this sentence is false" is false'. But then the whole outside sentence attributes falsity no longer to itself but to something else, so there is no paradox.
     From: Willard Quine (The Ways of Paradox [1961], p.07)
     A reaction: Quine is pointing us towards type theory and meta-languages to solve the problem. We now have the Revenge Liar, and the problem has not been fully settled.
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
Obviously there can't be a functional anaylsis of qualia if they are defined by intrinsic properties [Dennett]
     Full Idea: If you define qualia as intrinsic properties of experiences considered in isolation from all their causes and effects, logically independent of all dispositional properties, then they are logically guaranteed to elude all broad functional analysis.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.8)
     A reaction: This is a good point - it seems daft to reify qualia and imagine them dangling in mid-air with all their vibrant qualities - but that is a long way from saying there is nothing more to qualia than functional roles. Functions must be exlained too.
16. Persons / E. Rejecting the Self / 4. Denial of the Self
The work done by the 'homunculus in the theatre' must be spread amongst non-conscious agencies [Dennett]
     Full Idea: All the work done by the imagined homunculus in the Cartesian Theater must be distributed among various lesser agencies in the brain, none of which is conscious.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: Dennett's account crucially depends on consciousness being much more fragmentary than most philosophers claim it to be. It is actually full of joints, which can come apart. He may be right.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Intelligent agents are composed of nested homunculi, of decreasing intelligence, ending in machines [Dennett]
     Full Idea: As long as your homunculi are more stupid and ignorant than the intelligent agent they compose, the nesting of homunculi within homunculi can be finite, bottoming out, eventually, with agents so unimpressive they can be replaced by machines.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.6)
     A reaction: [Dennett first proposed this in 'Brainstorms' 1978]. This view was developed well by Lycan. I rate it as one of the most illuminating ideas in the modern philosophy of mind. All complex systems (like aeroplanes) have this structure.
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
I don't deny consciousness; it just isn't what people think it is [Dennett]
     Full Idea: I don't maintain, of course, that human consciousness does not exist; I maintain that it is not what people often think it is.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: I consider Dennett to be as near as you can get to an eliminativist, but he is not stupid. As far as I can see, the modern philosopher's bogey-man, the true total eliminativist, simply doesn't exist. Eliminativists usually deny propositional attitudes.
18. Thought / B. Mechanics of Thought / 6. Artificial Thought / a. Artificial Intelligence
What matters about neuro-science is the discovery of the functional role of the chemistry [Dennett]
     Full Idea: Neuro-science matters because - and only because - we have discovered that the many different neuromodulators and other chemical messengers that diffuse throughout the brain have functional roles that make important differences.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.1)
     A reaction: I agree with Dennett that this is the true ground for pessimism about spectacular breakthroughs in artificial intelligence, rather than abstract concerns about irreducible features of the mind like 'qualia' and 'rationality'.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Abstraction is 'logical' if the sense and truth of the abstraction depend on the concrete [Tait]
     Full Idea: If the sense of a proposition about the abstract domain is given in terms of the corresponding proposition about the (relatively) concrete domain, ..and the truth of the former is founded upon the truth of the latter, then this is 'logical abstraction'.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: The 'relatively' in parentheses allows us to apply his idea to levels of abstraction, and not just to the simple jump up from the concrete. I think Tait's proposal is excellent, rather than purloining 'abstraction' for an internal concept within logic.
Cantor and Dedekind use abstraction to fix grammar and objects, not to carry out proofs [Tait]
     Full Idea: Although (in Cantor and Dedekind) abstraction does not (as has often been observed) play any role in their proofs, but it does play a role, in that it fixes the grammar, the domain of meaningful propositions, and so determining the objects in the proofs.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: [compressed] This is part of a defence of abstractionism in Cantor and Dedekind (see K.Fine also on the subject). To know the members of a set, or size of a domain, you need to know the process or function which created the set.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction may concern the individuation of the set itself, not its elements [Tait]
     Full Idea: A different reading of abstraction is that it concerns, not the individuating properties of the elements relative to one another, but rather the individuating properties of the set itself, for example the concept of what is its extension.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VIII)
     A reaction: If the set was 'objects in the room next door', we would not be able to abstract from the objects, but we might get to the idea of things being contain in things, or the concept of an object, or a room. Wrong. That's because they are objects... Hm.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Why should abstraction from two equipollent sets lead to the same set of 'pure units'? [Tait]
     Full Idea: Why should abstraction from two equipollent sets lead to the same set of 'pure units'?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996])
     A reaction: [Tait is criticising Cantor] This expresses rather better than Frege or Dummett the central problem with the abstractionist view of how numbers are derived from matching groups of objects.
If abstraction produces power sets, their identity should imply identity of the originals [Tait]
     Full Idea: If the power |A| is obtained by abstraction from set A, then if A is equipollent to set B, then |A| = |B|. But this does not imply that A = B. So |A| cannot just be A, taken in abstraction, unless that can identify distinct sets, ..or create new objects.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: An elegant piece of argument, which shows rather crucial facts about abstraction. We are then obliged to ask how abstraction can create an object or a set, if the central activity of abstraction is just ignoring certain features.