Combining Texts

All the ideas for 'Demonstratives', 'Abstract Objects' and 'Structures and Structuralism in Phil of Maths'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
How we refer to abstractions is much less clear than how we refer to other things [Rosen]
     Full Idea: It is unclear how we manage to refer determinately to abstract entities in a sense in which it is not unclear how we manage to refer determinately to other things.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Ex')
     A reaction: This is where problems of abstraction overlap with problems about reference in language. Can we have a 'baptism' account of each abstraction (even very large numbers)? Will descriptions do it? Do abstractions collapse into particulars when we refer?
18. Thought / E. Abstraction / 2. Abstracta by Selection
The Way of Abstraction used to say an abstraction is an idea that was formed by abstracting [Rosen]
     Full Idea: The simplest version of the Way of Abstraction would be to say that an object is abstract if it is a referent of an idea that was formed by abstraction, but this is wedded to an outmoded philosophy of mind.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: This presumably refers to Locke, who wields the highly ambiguous term 'idea'. But if we sort out that ambiguity (by using modern talk of mental events, concepts and content?) we might reclaim the view. But do we have a 'genetic fallacy' here?
18. Thought / E. Abstraction / 5. Abstracta by Negation
Nowadays abstractions are defined as non-spatial, causally inert things [Rosen]
     Full Idea: If any characterization of the abstract deserves to be regarded as the modern standard one, it is this: an abstract entity is a non-spatial (or non-spatiotemporal) causally inert thing. This view presents a number of perplexities...
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: As indicated in other ideas, the problem is that some abstractions do seem to be located somewhere in space-time, and to have come into existence, and to pass away. I like 'to exist is to have causal powers'. See Ideas 5992 and 8300.
Chess may be abstract, but it has existed in specific space and time [Rosen]
     Full Idea: The natural view of chess is not that it is a non-spatiotemporal mathematical object, but that it was invented at a certain time and place, that it has changed over the years, and so on.
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: This strikes me as being undeniable, and being an incredibly important point. Logicians seem to want to subsume things like games into the highly abstract world of logic and numbers. In fact the direction of explanation should be reversed.
Sets are said to be abstract and non-spatial, but a set of books can be on a shelf [Rosen]
     Full Idea: It is thought that sets are abstract, abstract objects do not exist in space, so sets must not exist in space. But it is not unnatural to say that a set of books is located on a certain shelf in the library.
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: The arguments against non-spatiality of abstractions seem to me to be conclusive. Not being able to assign a location to the cosine function is on a par with not knowing where my thoughts are located in my brain.
18. Thought / E. Abstraction / 6. Abstracta by Conflation
Conflating abstractions with either sets or universals is a big claim, needing a big defence [Rosen]
     Full Idea: The Way of Conflation account of abstractions (identifying them sets or with universals) is now relatively rare. The claim sets or universals are the only abstract objects would amount to a substantive metaphysical thesis, in need of defence.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Con')
     A reaction: If you produce a concept like 'mammal' by psychological abstraction, you do seem to end up with a set of things with shared properties, so this approach is not silly. I can't think of any examples of abstractions which are not sets or universals.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Functional terms can pick out abstractions by asserting an equivalence relation [Rosen]
     Full Idea: On Frege's suggestion, functional terms that pick out abstract expressions (such as 'direction' or 'equinumeral') have a typical form of f(a) = f(b) iff aRb, where R is an equivalence relation, a relation which is reflexive, symmetric and transitive.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: [Wright and Hale are credited with the details] This has become the modern orthodoxy among the logically-minded. Examples of R are 'parallel' or 'just as many as'. It picks out an 'aspect', which isn't far from the old view.
Abstraction by equivalence relationships might prove that a train is an abstract entity [Rosen]
     Full Idea: It seems possible to define a train in terms of its carriages and the connection relationship, which would meet the equivalence account of abstraction, but demonstrate that trains are actually abstract.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: [Compressed. See article for more detail] A tricky example, but a suggestive line of criticism. If you find two physical objects which relate to one another reflexively, symmetrically and transitively, they may turn out to be abstract.
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Indexicals have a 'character' (the standing meaning), and a 'content' (truth-conditions for one context) [Kaplan, by Macią/Garcia-Carpentiro]
     Full Idea: Kaplan distinguished two different semantic features of indexical expressions: a 'character' that captures the standing meaning of the expression, and a 'content' that consists of their truth-conditional contribution in particular contexts.
     From: report of David Kaplan (Demonstratives [1989]) by Macią/Garcia-Carpentiro - Introduction to 'Two-Dimensional Semantics' 1
     A reaction: This seems so clearly right that there isn't much to dispute. You can't understand the word 'I' or 'now' if you don't understand both its general purpose, and what it is doing in a particular utterance. But will this generalise to other semantics?
'Content' gives the standard modal profile, and 'character' gives rules for a context [Kaplan, by Schroeter]
     Full Idea: Kaplan sees two aspects of meaning, the 'content', reflecting a thing's modal profile, which is modelled by standard possible worlds semantics, and 'character', giving rules for different contexts. Proper names have constant character; indexicals vary.
     From: report of David Kaplan (Demonstratives [1989]) by Laura Schroeter - Two-Dimensional Semantics 1.1.1
     A reaction: This gives rise to 2-D matrices for representing meaning, and the possible worlds are used twice, for evaluating meaning and then for evaluating context of use. I've always been struck by the two-dimensional semantics of passwords.