Combining Texts

All the ideas for 'Dthat', 'Logic in Mathematics' and 'Axiomatic Theories of Truth (2013 ver)'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

2. Reason / D. Definition / 3. Types of Definition
A 'constructive' (as opposed to 'analytic') definition creates a new sign [Frege]
     Full Idea: We construct a sense out of its constituents and introduce an entirely new sign to express this sense. This may be called a 'constructive definition', but we prefer to call it a 'definition' tout court. It contrasts with an 'analytic' definition.
     From: Gottlob Frege (Logic in Mathematics [1914], p.210)
     A reaction: An analytic definition is evidently a deconstruction of a past constructive definition. Fregean definition is a creative activity.
2. Reason / D. Definition / 10. Stipulative Definition
Frege suggested that mathematics should only accept stipulative definitions [Frege, by Gupta]
     Full Idea: Frege has defended the austere view that, in mathematics at least, only stipulative definitions should be countenanced.
     From: report of Gottlob Frege (Logic in Mathematics [1914]) by Anil Gupta - Definitions 1.3
     A reaction: This sounds intriguingly at odds with Frege's well-known platonism about numbers (as sets of equinumerous sets). It makes sense for other mathematical concepts.
2. Reason / E. Argument / 6. Conclusive Proof
We must be clear about every premise and every law used in a proof [Frege]
     Full Idea: It is so important, if we are to have a clear insight into what is going on, for us to be able to recognise the premises of every inference which occurs in a proof and the law of inference in accordance with which it takes place.
     From: Gottlob Frege (Logic in Mathematics [1914], p.212)
     A reaction: Teachers of logic like natural deduction, because it reduces everything to a few clear laws, which can be stated at each step.
3. Truth / A. Truth Problems / 2. Defining Truth
If we define truth, we can eliminate it [Halbach/Leigh]
     Full Idea: If truth can be explicitly defined, it can be eliminated.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 1.3)
     A reaction: That we could just say p corresponds to the facts, or p coheres with our accepted beliefs, or p is the aim of our enquiries, and never mention the word 'true'. Definition is a strategy for reduction or elimination.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
If a language cannot name all objects, then satisfaction must be used, instead of unary truth [Halbach/Leigh]
     Full Idea: If axioms are formulated for a language (such as set theory) that lacks names for all objects, then they require the use of a satisfaction relation rather than a unary truth predicate.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 3.3)
     A reaction: I take it this is an important idea for understanding why Tarski developed his account of truth based on satisfaction.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories need a powerful metalanguage, typically including set theory [Halbach/Leigh]
     Full Idea: Semantic approaches to truth usually necessitate the use of a metalanguage that is more powerful than the object-language for which it provides a semantics. It is usually taken to include set theory.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 1)
     A reaction: This is a motivation for developing an axiomatic account of truth, that moves it into the object language.
3. Truth / F. Semantic Truth / 2. Semantic Truth
The T-sentences are deductively weak, and also not deductively conservative [Halbach/Leigh]
     Full Idea: Although the theory is materially adequate, Tarski thought that the T-sentences are deductively too weak. …Also it seems that the T-sentences are not conservative, because they prove in PA that 0=0 and ¬0=0 are different, so at least two objects exist.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 3.2)
     A reaction: They are weak because they can't prove completeness. This idea give two reasons for looking for a better theory of truth.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
A natural theory of truth plays the role of reflection principles, establishing arithmetic's soundness [Halbach/Leigh]
     Full Idea: If a natural theory of truth is added to Peano Arithmetic, it is not necessary to add explicity global reflection principles to assert soundness, as the truth theory proves them. Truth theories thus prove soundess, and allows its expression.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 1.2)
     A reaction: This seems like a big attraction of axiomatic theories of truth for students of metamathematics.
If deflationary truth is not explanatory, truth axioms should be 'conservative', proving nothing new [Halbach/Leigh]
     Full Idea: If truth does not have any explanatory force, as some deflationists claim, the axioms of truth should not allow us to prove any new theorems that do not involve the truth predicate. That is, a deflationary axiomatisation of truth should be 'conservative'.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 1.3)
     A reaction: So does truth have 'explanatory force'? These guys are interested in explaining theorems of arithmetic, but I'm more interested in real life. People do daft things because they have daft beliefs. Logic should be neutral, but truth has values?
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
The FS axioms use classical logical, but are not fully consistent [Halbach/Leigh]
     Full Idea: It is a virtue of the Friedman-Sheard axiomatisation that it is thoroughly classical in its logic. Its drawback is that it is ω-inconsistent. That is, it proves &exists;x¬φ(x), but proves also φ(0), φ(1), φ(2), …
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 4.3)
     A reaction: It seems the theory is complete (and presumably sound), yet not fully consistent. FS also proves the finite levels of Tarski's hierarchy, but not the transfinite levels.
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
KF is formulated in classical logic, but describes non-classical truth, which allows truth-value gluts [Halbach/Leigh]
     Full Idea: KF is formulated in classical logic, but describes a non-classical notion of truth. It allow truth-value gluts, making some sentences (such as the Liar) both true and not-true. Some authors add an axiom ruling out such gluts.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 4.4)
     A reaction: [summary, which I hope is correct! Stanford is not wholly clear]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic not only proves things, but also reveals logical relations between them [Frege]
     Full Idea: A proof does not only serve to convince us of the truth of what is proved: it also serves to reveal logical relations between truths. Hence we find in Euclid proofs of truths that appear to stand in no need of proof because they are obvious without one.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
     A reaction: This is a key idea in Frege's philosophy, and a reason why he is the founder of modern analytic philosophy, with logic placed at the centre of the subject. I take the value of proofs to be raising questions, more than giving answers.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Does some mathematical reasoning (such as mathematical induction) not belong to logic? [Frege]
     Full Idea: Are there perhaps modes of inference peculiar to mathematics which …do not belong to logic? Here one may point to inference by mathematical induction from n to n+1.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: He replies that it looks as if induction can be reduced to general laws, and those can be reduced to logic.
The closest subject to logic is mathematics, which does little apart from drawing inferences [Frege]
     Full Idea: Mathematics has closer ties with logic than does almost any other discipline; for almost the entire activity of the mathematician consists in drawing inferences.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: The interesting question is who is in charge - the mathematician or the logician?
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
'Theorems' are both proved, and used in proofs [Frege]
     Full Idea: Usually a truth is only called a 'theorem' when it has not merely been obtained by inference, but is used in turn as a premise for a number of inferences in the science. ….Proofs use non-theorems, which only occur in that proof.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Tracing inference backwards closes in on a small set of axioms and postulates [Frege]
     Full Idea: We can trace the chains of inference backwards, …and the circle of theorems closes in more and more. ..We must eventually come to an end by arriving at truths can cannot be inferred, …which are the axioms and postulates.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
     A reaction: The rival (more modern) view is that that all theorems are equal in status, and axioms are selected for convenience.
The essence of mathematics is the kernel of primitive truths on which it rests [Frege]
     Full Idea: Science must endeavour to make the circle of unprovable primitive truths as small as possible, for the whole of mathematics is contained in this kernel. The essence of mathematics has to be defined by this kernel of truths.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204-5)
     A reaction: [compressed] I will make use of this thought, by arguing that mathematics may be 'explained' by this kernel.
Axioms are truths which cannot be doubted, and for which no proof is needed [Frege]
     Full Idea: The axioms are theorems, but truths for which no proof can be given in our system, and no proof is needed. It follows from this that there are no false axioms, and we cannot accept a thought as an axiom if we are in doubt about its truth.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
     A reaction: He struggles to be as objective as possible, but has to concede that whether we can 'doubt' the axiom is one of the criteria.
A truth can be an axiom in one system and not in another [Frege]
     Full Idea: It is possible for a truth to be an axiom in one system and not in another.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
     A reaction: Frege aspired to one huge single system, so this is a begrudging concession, one which modern thinkers would probably take for granted.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
To create order in mathematics we need a full system, guided by patterns of inference [Frege]
     Full Idea: We cannot long remain content with the present fragmentation [of mathematics]. Order can be created only by a system. But to construct a system it is necessary that in any step forward we take we should be aware of the logical inferences involved.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
If principles are provable, they are theorems; if not, they are axioms [Frege]
     Full Idea: If the law [of induction] can be proved, it will be included amongst the theorems of mathematics; if it cannot, it will be included amongst the axioms.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: This links Frege with the traditional Euclidean view of axioms. The question, then, is how do we know them, given that we can't prove them.
8. Modes of Existence / B. Properties / 12. Denial of Properties
We can reduce properties to true formulas [Halbach/Leigh]
     Full Idea: One might say that 'x is a poor philosopher' is true of Tom instead of saying that Tom has the property of being a poor philosopher. We quantify over formulas instead of over definable properties, and thus reduce properties to truth.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 1.1)
     A reaction: [compressed] This stuff is difficult (because the axioms are complex and hard to compare), but I am excited (yes!) about this idea. Their point is that you need a truth predicate within the object language for this, which disquotational truth forbids.
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Nominalists can reduce theories of properties or sets to harmless axiomatic truth theories [Halbach/Leigh]
     Full Idea: The reduction of second-order theories (of properties or sets) to axiomatic theories of truth is a form of reductive nominalism, replacing existence assumptions (e.g. comprehension axioms) by innocuous assumptions about the truth predicate.
     From: Halbach,V/Leigh,G.E. (Axiomatic Theories of Truth (2013 ver) [2013], 1.1)
     A reaction: I'm currently thinking that axiomatic theories of truth are the most exciting development in contemporary philosophy. See Halbach and Horsten.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Every concept must have a sharp boundary; we cannot allow an indeterminate third case [Frege]
     Full Idea: Of any concept, we must require that it have a sharp boundary. Of any object it must hold either that it falls under the concept or it does not. We may not allow a third case in which it is somehow indeterminate whether an object falls under a concept.
     From: Gottlob Frege (Logic in Mathematics [1914], p.229), quoted by Ian Rumfitt - The Logic of Boundaryless Concepts p.1 n1
     A reaction: This is the voice of the classical logician, which has echoed by Russell. I'm with them, I think, in the sense that logic can only work with precise concepts. The jury is still out. Maybe we can 'precisify', without achieving total precision.
18. Thought / B. Mechanics of Thought / 5. Mental Files
We need definitions to cram retrievable sense into a signed receptacle [Frege]
     Full Idea: If we need such signs, we also need definitions so that we can cram this sense into the receptacle and also take it out again.
     From: Gottlob Frege (Logic in Mathematics [1914], p.209)
     A reaction: Has anyone noticed that Frege is the originator of the idea of the mental file? Has anyone noticed the role that definition plays in his account?
We use signs to mark receptacles for complex senses [Frege]
     Full Idea: We often need to use a sign with which we associate a very complex sense. Such a sign seems a receptacle for the sense, so that we can carry it with us, while being always aware that we can open this receptacle should we need what it contains.
     From: Gottlob Frege (Logic in Mathematics [1914], p.209)
     A reaction: This exactly the concept of a mental file, which I enthusiastically endorse. Frege even talks of 'opening the receptacle'. For Frege a definition (which he has been discussing) is the assigment of a label (the 'definiendum') to the file (the 'definiens').
19. Language / A. Nature of Meaning / 6. Meaning as Use
A sign won't gain sense just from being used in sentences with familiar components [Frege]
     Full Idea: No sense accrues to a sign by the mere fact that it is used in one or more sentences, the other constituents of which are known.
     From: Gottlob Frege (Logic in Mathematics [1914], p.213)
     A reaction: Music to my ears. I've never grasped how meaning could be grasped entirely through use.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Are causal descriptions part of the causal theory of reference, or are they just metasemantic? [Kaplan, by Schaffer,J]
     Full Idea: Kaplan notes that the causal theory of reference can be understood in two quite different ways, as part of the semantics (involving descriptions of causal processes), or as metasemantics, explaining why a term has the referent it does.
     From: report of David Kaplan (Dthat [1970]) by Jonathan Schaffer - Deflationary Metaontology of Thomasson 1
     A reaction: [Kaplan 'Afterthought' 1989] The theory tends to be labelled as 'direct' rather than as 'causal' these days, but causal chains are still at the heart of the story (even if more diffused socially). Nice question. Kaplan takes the meta- version as orthodox.
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
Thoughts are not subjective or psychological, because some thoughts are the same for us all [Frege]
     Full Idea: A thought is not something subjective, is not the product of any form of mental activity; for the thought that we have in Pythagoras's theorem is the same for everybody.
     From: Gottlob Frege (Logic in Mathematics [1914], p.206)
     A reaction: When such thoughts are treated as if the have objective (platonic) existence, I become bewildered. I take a thought (or proposition) to be entirely psychological, but that doesn't stop two people from having the same thought.
A thought is the sense expressed by a sentence, and is what we prove [Frege]
     Full Idea: The sentence is of value to us because of the sense that we grasp in it, which is recognisably the same in a translation. I call this sense the thought. What we prove is not a sentence, but a thought.
     From: Gottlob Frege (Logic in Mathematics [1914], p.206)
     A reaction: The 'sense' is presumably the German 'sinn', and a 'thought' in Frege is what we normally call a 'proposition'. So the sense of a sentence is a proposition, and logic proves propositions. I'm happy with that.
19. Language / D. Propositions / 5. Unity of Propositions
The parts of a thought map onto the parts of a sentence [Frege]
     Full Idea: A sentence is generally a complex sign, so the thought expressed by it is complex too: in fact it is put together in such a way that parts of a thought correspond to parts of the sentence.
     From: Gottlob Frege (Logic in Mathematics [1914], p.207)
     A reaction: This is the compositional view of propositions, as opposed to the holistic view.