Combining Texts

All the ideas for 'Dthat', 'Formal and Material Consequence' and 'Russell's Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
     Full Idea: Impredicative Definitions are definitions of an object by reference to the totality to which the object itself (and perhaps also things definable only in terms of that object) belong.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], n 13)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
     Full Idea: In the superior realist and simple theory of types, the place of the axiom of reducibility is not taken by the axiom of classes, Zermelo's Aussonderungsaxiom.
     From: report of Kurt Gödel (Russell's Mathematical Logic [1944], p.140-1) by Bernard Linsky - Russell's Metaphysical Logic 6.1 n3
     A reaction: This is Zermelo's Axiom of Separation, but that too is not an axiom of standard ZFC.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
If logic is topic-neutral that means it delves into all subjects, rather than having a pure subject matter [Read]
     Full Idea: The topic-neutrality of logic need not mean there is a pure subject matter for logic; rather, that the logician may need to go everywhere, into mathematics and even into metaphysics.
     From: Stephen Read (Formal and Material Consequence [1994], 'Logic')
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
     Full Idea: 'Mathematical Logic' is a precise and complete formulation of formal logic, and is both a section of mathematics covering classes, relations, symbols etc, and also a science prior to all others, with ideas and principles underlying all sciences.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.447)
     A reaction: He cites Leibniz as the ancestor. In this database it is referred to as 'theory of logic', as 'mathematical' seems to be simply misleading. The principles of the subject are standardly applied to mathematical themes.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Not all arguments are valid because of form; validity is just true premises and false conclusion being impossible [Read]
     Full Idea: Belief that every valid argument is valid in virtue of form is a myth. ..Validity is a question of the impossibility of true premises and false conclusion for whatever reason, and some arguments are materially valid and the reason is not purely logical.
     From: Stephen Read (Formal and Material Consequence [1994], 'Logic')
     A reaction: An example of a non-logical reason is the transitive nature of 'taller than'. Conceptual connections are the usual example, as in 'it's red so it is coloured'. This seems to be a defence of the priority of semantic consequence in logic.
If the logic of 'taller of' rests just on meaning, then logic may be the study of merely formal consequence [Read]
     Full Idea: In 'A is taller than B, and B is taller than C, so A is taller than C' this can been seen as a matter of meaning - it is part of the meaning of 'taller' that it is transitive, but not of logic. Logic is now seen as the study of formal consequence.
     From: Stephen Read (Formal and Material Consequence [1994], 'Reduct')
     A reaction: I think I find this approach quite appealing. Obviously you can reason about taller-than relations, by putting the concepts together like jigsaw pieces, but I tend to think of logic as something which is necessarily implementable on a machine.
Maybe arguments are only valid when suppressed premises are all stated - but why? [Read]
     Full Idea: Maybe some arguments are really only valid when a suppressed premise is made explicit, as when we say that 'taller than' is a transitive concept. ...But what is added by making the hidden premise explicit? It cannot alter the soundness of the argument.
     From: Stephen Read (Formal and Material Consequence [1994], 'Suppress')
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
In modus ponens the 'if-then' premise contributes nothing if the conclusion follows anyway [Read]
     Full Idea: A puzzle about modus ponens is that the major premise is either false or unnecessary: A, If A then B / so B. If the major premise is true, then B follows from A, so the major premise is redundant. So it is false or not needed, and contributes nothing.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: Not sure which is the 'major premise' here, but it seems to be saying that the 'if A then B' is redundant. If I say 'it's raining so the grass is wet', it seems pointless to slip in the middle the remark that rain implies wet grass. Good point.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Logical connectives contain no information, but just record combination relations between facts [Read]
     Full Idea: The logical connectives are useful for bundling information, that B follows from A, or that one of A or B is true. ..They import no information of their own, but serve to record combinations of other facts.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: Anyone who suggests a link between logic and 'facts' gets my vote, so this sounds a promising idea. However, logical truths have a high degree of generality, which seems somehow above the 'facts'.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
     Full Idea: One may, on good grounds, deny that reference to a totality necessarily implies reference to all single elements of it or, in other words, that 'all' means the same as an infinite logical conjunction.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.455)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
     Full Idea: In order to be sure that new expression can be translated into expressions not containing them, it is necessary to have a survey of all possible expressions, and this can be furnished only by syntactical considerations.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.448)
     A reaction: [compressed]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
     Full Idea: The generalized Continuum Hypothesis says that there exists no cardinal number between the power of any arbitrary set and the power of the set of its subsets.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
     Full Idea: It has turned out that the solution of certain arithmetical problems requires the use of assumptions essentially transcending arithmetic.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.449)
     A reaction: A nice statement of the famous result, from the great man himself, in the plainest possible English.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
     Full Idea: Classes and concepts may be conceived of as real objects, ..and are as necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions, with neither case being about 'data'.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.456)
     A reaction: Note that while he thinks real objects are essential for mathematics, be may not be claiming the same thing for our knowledge of logic. If logic contains no objects, then how could mathematics be reduced to it, as in logicism?
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
     Full Idea: Impredicative definitions are admitted into ordinary mathematics.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
     A reaction: The issue is at what point in building an account of the foundations of mathematics (if there be such, see Putnam) these impure definitions should be ruled out.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Conditionals are just a shorthand for some proof, leaving out the details [Read]
     Full Idea: Truth enables us to carry various reports around under certain descriptions ('what Iain said') without all the bothersome detail. Similarly, conditionals enable us to transmit a record of proof without its detail.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: This is his proposed Redundancy Theory of conditionals. It grows out of the problem with Modus Ponens mentioned in Idea 14184. To say that there is always an implied 'proof' seems a large claim.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Are causal descriptions part of the causal theory of reference, or are they just metasemantic? [Kaplan, by Schaffer,J]
     Full Idea: Kaplan notes that the causal theory of reference can be understood in two quite different ways, as part of the semantics (involving descriptions of causal processes), or as metasemantics, explaining why a term has the referent it does.
     From: report of David Kaplan (Dthat [1970]) by Jonathan Schaffer - Deflationary Metaontology of Thomasson 1
     A reaction: [Kaplan 'Afterthought' 1989] The theory tends to be labelled as 'direct' rather than as 'causal' these days, but causal chains are still at the heart of the story (even if more diffused socially). Nice question. Kaplan takes the meta- version as orthodox.