Combining Texts

All the ideas for 'Subjectivist's Guide to Objective Chance', 'Abstract Entities' and 'Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
     Full Idea: Naïve set theory is based on the principles that any formula defines a set, and that coextensive sets are identical.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.2)
     A reaction: The second principle is a standard axiom of ZFC. The first principle causes the trouble.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
     Full Idea: In classical semantics the function of singular terms is to refer, and that of quantifiers, to range over appropriate domains of entities.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 7.1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
     Full Idea: Considered in isolation, the axioms of group theory are not assertions but comprise an implicit definition of some abstract structure,
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.5)
     A reaction: The traditional Euclidean approach is that axioms are plausible assertions with which to start. The present idea sums up the modern approach. In the modern version you can work backwards from a structure to a set of axioms.
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
     Full Idea: Mathematics investigates the deductive consequences of axiomatic theories, but it also needs its own foundational axioms in order to provide models for its various axiomatic theories.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.1)
     A reaction: This is a problem which faces the deductivist (if-then) approach. The deductive process needs its own grounds.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
     Full Idea: If the 2nd Incompleteness Theorem undermines Hilbert's attempt to use a weak theory to prove the consistency of a strong one, it is still possible to prove the consistency of one theory, assuming the consistency of another theory.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.6)
     A reaction: Note that this concerns consistency, not completeness.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
     Full Idea: Philosophical structuralism holds that mathematics is the study of abstract structures, or 'patterns'. If mathematics is the study of all possible patterns, then it is inevitable that the world is described by mathematics.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 11.1)
     A reaction: [He cites the physicist John Barrow (2010) for this] For me this is a major idea, because the concept of a pattern gives a link between the natural physical world and the abstract world of mathematics. No platonism is needed.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
     Full Idea: Modern logic requires that logical truths be true in all models, including ones devoid of any mathematical objects. It follows immediately that the existence of mathematical objects can never be a matter of logic alone.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 2)
     A reaction: Hm. Could there not be a complete set of models for a theory which all included mathematical objects? (I can't answer that).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
     Full Idea: Game Formalism seeks to banish all semantics from mathematics, and Term Formalism seeks to reduce any such notions to purely syntactic ones.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.3)
     A reaction: This approach was stimulated by the need to justify the existence of the imaginary number i. Just say it is a letter!
7. Existence / A. Nature of Existence / 4. Abstract Existence
Some abstract things have a beginning and end, so may exist in time (though not space) [Swoyer]
     Full Idea: Many things that seem to be abstract also seem to have a beginning (and ending) in time, such as a language like Urdu. It may be tempting to say that such things exist in time but not in space, but where exactly?
     From: Chris Swoyer (Abstract Entities [2008], 1.1)
     A reaction: A few distinctions might be needed. Urdu-speaking is an ability of certain people. We abstract from that their 'language'. There is nothing there apart from that ability. It has no more abstract existence than the 'weather'.
7. Existence / D. Theories of Reality / 1. Ontologies
Ontologists seek existence and identity conditions, and modal and epistemic status for a thing [Swoyer]
     Full Idea: Four things philosophers often want to know about a given sort of entity are: its existence conditions, its identity conditions, its modal status, and its epistemic status.
     From: Chris Swoyer (Abstract Entities [2008], 3)
     A reaction: I prefer 'modal profile' to 'modal status'. The 'existence conditions' sound rather epistemic. Why does the existence of anything require 'conditions' other than just existing? I suspect identity is irrelevant if humans aren't around.
8. Modes of Existence / B. Properties / 1. Nature of Properties
Can properties exemplify other properties? [Swoyer]
     Full Idea: Can properties themselves exemplify properties?
     From: Chris Swoyer (Abstract Entities [2008], 3)
     A reaction: Since I espouse a rather strict causal view of true properties, and lump the rest into the category of 'predicates', I am inclined to answer 'no' to this. Most people would disagree. 'Bright red' seems to be an example. But it isn't.
9. Objects / A. Existence of Objects / 5. Simples
Quantum field theory suggests that there are, fundamentally, no individual things [Swoyer]
     Full Idea: Quantum field theory strongly suggests that there are (at the fundamental level) no individual, particular things.
     From: Chris Swoyer (Abstract Entities [2008], 2.1)
     A reaction: When people introduce quantum theory into ontological discussions I reach for my shotgun, but it does rather look as if things turn to mush at the bottom level.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Lewis later proposed the axioms at the intersection of the best theories (which may be few) [Mumford on Lewis]
     Full Idea: Later Lewis said we must choose between the intersection of the axioms of the tied best systems. He chose for laws the axioms that are in all the tied systems (but then there may be few or no axioms in the intersection).
     From: comment on David Lewis (Subjectivist's Guide to Objective Chance [1980], p.124) by Stephen Mumford - Laws in Nature