Combining Texts

All the ideas for 'Causation', 'The Particle Zoo' and 'On the Basis of Morality'

unexpand these ideas     |    start again     |     specify just one area for these texts


38 ideas

8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
If dispositions are more fundamental than causes, then they won't conceptually reduce to them [Bird on Lewis]
     Full Idea: Maybe a disposition is a more fundamental notion than a cause, in which case Lewis has from the very start erred in seeking a causal analysis, in a traditional, conceptual sense, of disposition terms.
     From: comment on David Lewis (Causation [1973]) by Alexander Bird - Nature's Metaphysics 2.2.8
     A reaction: Is this right about Lewis? I see him as reducing both dispositions and causes to a set of bald facts, which exist in possible and actual worlds. Conditionals and counterfactuals also suffer the same fate.
10. Modality / B. Possibility / 9. Counterfactuals
For true counterfactuals, both antecedent and consequent true is closest to actuality [Lewis]
     Full Idea: A counterfactual is non-vacuously true iff it takes less of a departure from actuality to make the consequent true along with the antecedent than it does to make the antecedent true without the consequent.
     From: David Lewis (Causation [1973], p.197)
     A reaction: Almost every theory proposed by Lewis hangs on the meaning of the word 'close', as used here. If you visited twenty Earth-like worlds (watch Startrek?), it would be a struggle to decide their closeness to ours in rank order.
16. Persons / F. Free Will / 6. Determinism / a. Determinism
Determinism says there can't be two identical worlds up to a time, with identical laws, which then differ [Lewis]
     Full Idea: By determinism I mean that the prevailing laws of nature are such that there do not exist any two possible worlds which are exactly alike up to that time, which differ thereafter, and in which those laws are never violated.
     From: David Lewis (Causation [1973], p.196)
     A reaction: This would mean that the only way an action of free will could creep in would be if it accepted being a 'violation' of the laws of nature. Fans of free will would probably prefer to call it a 'natural' phenomenon. I'm with Lewis.
19. Language / D. Propositions / 2. Abstract Propositions / b. Propositions as possible worlds
A proposition is a set of possible worlds where it is true [Lewis]
     Full Idea: I identify a proposition with the set of possible worlds where it is true.
     From: David Lewis (Causation [1973], p.193)
     A reaction: As it stands, I'm baffled by this. How can 'it is raining' be a set of possible worlds? I assume it expands to refer to the truth-conditions, among possibilities as well as actualities. 'It is raining' fits all worlds where it is raining.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / b. Rational ethics
Reason can be vicious, and great crimes have to be rational [Schopenhauer]
     Full Idea: Reasonable and vicious are quite consistent with each other, in fact, only through their union are great and far-reaching crimes possible.
     From: Arthur Schopenhauer (On the Basis of Morality [1841], p.83), quoted by Christopher Janaway - Schopenhauer 7 'Against'
     A reaction: This is opposed to Kant, who always looks wildly optimistic in his hope that high rationality entails a morally good will. Good people seem to have a fairly irrational empathy with their fellow citizens.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Man's three basic ethical incentives are egoism, malice and compassion [Schopenhauer]
     Full Idea: Man's three fundamental ethical incentives, egoism, malice and compassion, are present in everyone in different and incredibly unequal proportions. In accordance with them, motives will operate on man and actions will ensue.
     From: Arthur Schopenhauer (On the Basis of Morality [1841], p.192), quoted by Christopher Janaway - Schopenhauer 7 'Egoism'
     A reaction: A well chosen trio. Kant would be shocked that he has left out duty, which is supposed to rise above such feelings.
25. Social Practice / F. Life Issues / 6. Animal Rights
Philosophy treats animals as exploitable things, ignoring the significance of their lives [Schopenhauer]
     Full Idea: In philosophical morals animals are mere 'things', mere means to any end whatsoever. ...Shame on such a morality, that fails to recognise the eternal essence that lives in every living thing, and shines forth with inscrutable significance from all eyes.
     From: Arthur Schopenhauer (On the Basis of Morality [1841], p.96), quoted by Christopher Janaway - Schopenhauer 7 'Against'
     A reaction: Good. I find Kant's theoretical indifference to animals very creepy (despite his kind attitude to them). And I also think the utilitarians are wrong to only value animals for their pain, as if any animal could be shredded for fun, if it felt no pain.
26. Natural Theory / C. Causation / 5. Direction of causation
A theory of causation should explain why cause precedes effect, not take it for granted [Lewis, by Field,H]
     Full Idea: Lewis thinks it is a major defect in a theory of causation that it builds in the condition that the time of the cause precede that of the effect: that cause precedes effect is something we ought to explain (which his counterfactual theory claims to do).
     From: report of David Lewis (Causation [1973]) by Hartry Field - Causation in a Physical World
     A reaction: My immediate reaction is that the chances of explaining such a thing are probably nil, and that we might as well just accept the direction of causation as a given. Even philosophers balk at the question 'why doesn't time go backwards?'
I reject making the direction of causation axiomatic, since that takes too much for granted [Lewis]
     Full Idea: One might stipulate that a cause must always precede its effect, but I reject this solution. It won't solve the problem of epiphenomena, it rejects a priori any backwards causation, and it trivializes defining time-direction through causation.
     From: David Lewis (Causation [1973], p.203)
     A reaction: [compressed] Not strong arguments, I would say. Maybe apparent causes are never epiphenomenal. Maybe backwards causation is impossible. Maybe we must use time to define causal direction, and not vice versa.
26. Natural Theory / C. Causation / 8. Particular Causation / d. Selecting the cause
It is just individious discrimination to pick out one cause and label it as 'the' cause [Lewis]
     Full Idea: We sometimes single out one among all the causes of some event and call it 'the' cause. ..We may select the abnormal causes, or those under human control, or those we deem good or bad, or those we want to talk about. This is invidious discrimination.
     From: David Lewis (Causation [1973])
     A reaction: This is the standard view expressed by Mill - presumably the obvious empiricist line. But if we specify 'the pre-conditions' for an event, we can't just mention ANY fact prior to the effect - there is obvious relevance. So why not for 'the' cause as well?
The modern regularity view says a cause is a member of a minimal set of sufficient conditions [Lewis]
     Full Idea: In present-day regularity analyses, a cause is defined (roughly) as any member of any minimal set of actual conditions that are jointly sufficient, given the laws, for the existence of the effect.
     From: David Lewis (Causation [1973], p.193)
     A reaction: This is the view Lewis is about to reject. It seem to summarise the essence of the Mackie INUS theory. This account would make the presence of oxygen a cause of almost every human event.
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Regularity analyses could make c an effect of e, or an epiphenomenon, or inefficacious, or pre-empted [Lewis]
     Full Idea: In the regularity analysis of causes, instead of c causing e, c might turn out to be an effect of e, or an epiphenomenon, or an inefficacious effect of a genuine cause, or a pre-empted cause (by some other cause) of e.
     From: David Lewis (Causation [1973], p.194)
     A reaction: These are Lewis's reasons for rejecting the general regularity account, in favour of his own particular counterfactual account. It is unlikely that c would be regularly pre-empted or epiphenomenal. If we build time's direction in, it won't be an effect.
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
The counterfactual view says causes are necessary (rather than sufficient) for their effects [Lewis, by Bird]
     Full Idea: The Humean idea, developed by Lewis, is that rather than being sufficient for their effects, causes are (counterfactual) necessary for their effects.
     From: report of David Lewis (Causation [1973]) by Alexander Bird - Causation and the Manifestation of Powers p.162
Lewis has basic causation, counterfactuals, and a general ancestral (thus handling pre-emption) [Lewis, by Bird]
     Full Idea: Lewis's basic account has a basic causal relation, counterfactual dependence, and the general causal relation is the ancestral of this basic one. ...This is motivated by counterfactual dependence failing to be general because of the pre-emption problem.
     From: report of David Lewis (Causation [1973]) by Alexander Bird - Causation and the Manifestation of Powers p.161
     A reaction: It is so nice when you struggle for ages with a topic, and then some clever person summarises it clearly for you.
Counterfactual causation implies all laws are causal, which they aren't [Tooley on Lewis]
     Full Idea: Some counterfactuals are based on non-causal laws, such as Newton's Third Law of Motion. 'If no force one way, then no force the other'. Lewis's counterfactual analysis implies that one force causes the other, which is not the case.
     From: comment on David Lewis (Causation [1973]) by Michael Tooley - Causation and Supervenience 5.2
     A reaction: So what exactly does 'cause' my punt to move forwards? Basing causal laws on counterfactual claims looks to me like putting the cart before the horse.
My counterfactual analysis applies to particular cases, not generalisations [Lewis]
     Full Idea: My (counterfactual) analysis is meant to apply to causation in particular cases; it is not an analysis of causal generalizations. Those presumably quantify over particulars, but it is hard to match natural language to the quantifiers.
     From: David Lewis (Causation [1973], p.195)
     A reaction: What authority could you have for asserting a counterfactual claim, if you only had one observation? Isn't the counterfactual claim the hallmark of a generalisation? For one case, 'if not-c, then not-e' is just a speculation.
One event causes another iff there is a causal chain from first to second [Lewis]
     Full Idea: One event is the cause of another iff there exists a causal chain leading from the first to the second.
     From: David Lewis (Causation [1973], p.200)
     A reaction: It will be necessary to both explain and identify a 'chain'. Some chains are extremely tenuous (Alexander could stop a barrel of beer). Go back a hundred years, and the cause of any present event is everything back then.
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Lewis's account of counterfactuals is fine if we know what a law of nature is, but it won't explain the latter [Cohen,LJ on Lewis]
     Full Idea: Lewis can elucidate the logic of counterfactuals on the assumption that you are not at all puzzled about what a law of nature is. But if you are puzzled about this, it cannot contribute anything towards resolving your puzzlement.
     From: comment on David Lewis (Causation [1973]) by L. Jonathan Cohen - The Problem of Natural Laws p.219
     A reaction: This seems like a penetrating remark. The counterfactual theory is wrong, partly because it is epistemological instead of ontological, and partly because it refuses to face the really difficult problem, of what is going on out there.
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Relativity and Quantum theory give very different accounts of forces [Hesketh]
     Full Idea: General Relativity and quantum mechanics are the two great theories in physics today but they give two very different ideas for how forces work.
     From: Gavin Hesketh (The Particle Zoo [2016], 01)
     A reaction: Relativity says it is space curvature, and quantum theory says it is particle exchange? But is there a Relativity account of the strong nuclear force?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / a. Energy
Thermodynamics introduced work and entropy, to understand steam engine efficiency [Hesketh]
     Full Idea: The Laws of Thermodynamics introduced the concepts of entropy and work; put simply, how much useful energy you can really get out of a steam engine.
     From: Gavin Hesketh (The Particle Zoo [2016], 03)
     A reaction: The point of science by this stage was to introduce measurable and quantifiable concepts
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Spinning electric charge produces magnetism, so all fermions are magnets [Hesketh]
     Full Idea: The muon, like all fermions, spins - and because a spinning electric charge generates a magnetic field all fermions act like tiny bar magnets.
     From: Gavin Hesketh (The Particle Zoo [2016], 11)
Photons are B and W° bosons, linked by the Higgs mechanism [Hesketh]
     Full Idea: The photon is actually a mix of two deeper things, the B and the W°, tied together by the Higgs mechanism.
     From: Gavin Hesketh (The Particle Zoo [2016], 06)
     A reaction: The B (for 'Boson') transmits a force associated with the 'winding symmetry'. (I record this without properly understanding it.)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons may have smaller components, bound by a new force [Hesketh]
     Full Idea: Quarks, leptons or bosons may actually be made up of something even smaller, bound together by a conjectural new force.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: Electrons are a type of lepton. Compare Idea 21180, from the same book. If electrons are not fundamental, what matters is not some 'stuff' they are made of, but a different force that would bind the ingredients.
Electrons are fundamental and are not made of anything; they are properties without size [Hesketh]
     Full Idea: As far as we can tell, electrons (and quarks) are fundamental. They are not small lumps of material, because we could always ask what the material is. The electron just ...is. They are collections of properties, with no apparent size.
     From: Gavin Hesketh (The Particle Zoo [2016], 01)
     A reaction: This idea from physics HAS to be of interest to philosophers! The bundle theory is discredited for normal objects and for minds, and so is the substrate idea for supporting properties. But rigorous physics accepts a bundle theory.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum mechanics is our only theory, and is very precise, and repeatedly confirmed [Hesketh]
     Full Idea: Quantum mechanics is the only working description of the universe that we have. It is amazingly precise, and so far every experimental test has verified its predictions.
     From: Gavin Hesketh (The Particle Zoo [2016], 02)
     A reaction: I take it from this that quantum mechanics is simply TRUE. Get over it! It will never turn out to be wrong, but may be subsumed within some more fine-grained or extensive theory.
Physics was rewritten to explain stable electron orbits [Hesketh]
     Full Idea: Explaining the stable electron orbits would require a complete rewriting of the physics of subatomic particles.
     From: Gavin Hesketh (The Particle Zoo [2016], 03)
     A reaction: This really looks like a simple and major landmark moment. You can ignore a single anomaly, but not a central feature of your entire theory.
Virtual particles can't be measured, and can ignore the laws of physics [Hesketh]
     Full Idea: We can never measure these virtual (transitory) particles directly, and it turns out that they don't even have to obey the laws of physics.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: These seems to be the real significance of the Uncertainty Principle. Such particles 'borrow' huge amounts of energy for very short times.
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
Colour charge is positive or negative, and also has red, green or blue direction [Hesketh]
     Full Idea: Colour charge is 'three-dimensional'. As well as the charge having a positive or negative sign, it can also have a direction, and for convenience these three different directions (pointing like a weather vane) are labelled 'red', 'green' and 'blue'.
     From: Gavin Hesketh (The Particle Zoo [2016], 04)
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The Standard Model omits gravity, because there are no particles involved [Hesketh]
     Full Idea: Gravity is not included in the Standard Model because we simply cannot study it using particles.
     From: Gavin Hesketh (The Particle Zoo [2016], 09)
     A reaction: I'm guessing that Einstein describes how gravity behaves, but not what it is.
In Supersymmetry the Standard Model simplifies at high energies [Hesketh]
     Full Idea: Supersymmetry suggest that the Standard Model becomes much simpler at high energies.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
Standard Model forces are one- two- and three-dimensional [Hesketh]
     Full Idea: The forces in the Standard Model are built on gauge symmetries, with a one-dimensional charge (like electromagnetism), a two-dimensional charge (the weak force), and a three dimensional charge (the strong force).
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: See also Idea 21185.
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Quarks and leptons have a weak charge, for the weak force [Hesketh]
     Full Idea: For the weak force there must be a corresponding 'weak charge', and all the fermions, all the quarks and leptons carry it.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: So electrons carry a weak charge, as well as an electromagnetic charge. Like owning several passports.
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Quarks rush wildly around in protons, restrained by the gluons [Hesketh]
     Full Idea: Inside a proton the quarks are rushing around like caged animals, free to move until they push against the bars to try to escape, when the gluons pull them back in.
     From: Gavin Hesketh (The Particle Zoo [2016], 04)
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos only interact with the weak force, but decays produce them in huge numbers [Hesketh]
     Full Idea: Neutrinos only interact with the weak force, which means they barely interact at all, but because the weak force is crucial in the decays of so many other particles, neutrinos are still produced in huge numbers.
     From: Gavin Hesketh (The Particle Zoo [2016], 08)
     A reaction: They only interact with the W and Z bosons.
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
To combine the forces, they must all be the same strength at some point [Hesketh]
     Full Idea: If all the forces are to combine, at some point they must all be the same strength, and Supersymmetry (SuSy) makes this happen.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: This sounds like an impressive reason for favouring supersymmetry - as long as you have an a priori preference for everything combining.
27. Natural Reality / C. Space / 5. Relational Space
'Space' in physics just means location [Hesketh]
     Full Idea: 'Space' in physics really just means location.
     From: Gavin Hesketh (The Particle Zoo [2016], 06)
     A reaction: Location can, of course, only be specified relative to something else. Space is really an abstraction, but at least it means there is some sort of background to locate all the fundamental fields.
27. Natural Reality / E. Cosmology / 8. Dark Matter
The universe is 68% dark energy, 27% dark matter, 5% regular matter [Hesketh]
     Full Idea: The most precise surveys of the stars and galaxies tell us that the universe is made up of 68% dark energy, 27% dark matter, and just 5% regular matter (the stuff of the Standard Model of particle physics).
     From: Gavin Hesketh (The Particle Zoo [2016], 09)
     A reaction: Regular matter - that's me, that is.
27. Natural Reality / E. Cosmology / 9. Fine-Tuned Universe
If a cosmic theory relies a great deal on fine-tuning basic values, it is probably wrong [Hesketh]
     Full Idea: If a theory has to rely on excessive 'fine-tuning', a series of extremely unlikely events in order to produce the universe we see around us, then it is extremely unlikely that this theory is correct.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: He says the Standard Model has 26 parameters which are only known by experiment, rather than by theory. So instead of saying '...so there is a God', we should say '...so our theory isn't very good'.