Combining Texts

All the ideas for 'Subjectivist's Guide to Objective Chance', 'Grundgesetze der Arithmetik 1 (Basic Laws)' and 'Russell's Metaphysical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

2. Reason / D. Definition / 8. Impredicative Definition
'Impredictative' definitions fix a class in terms of the greater class to which it belongs [Linsky,B]
     Full Idea: The ban on 'impredicative' definitions says you can't define a class in terms of a totality to which that class must be seen as belonging.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: So that would be defining 'citizen' in terms of the community to which the citizen belongs? If you are asked to define 'community' and 'citizen' together, where do you start? But how else can it be done? Russell's Reducibility aimed to block this.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility says any impredicative function has an appropriate predicative replacement [Linsky,B]
     Full Idea: The Axiom of Reducibility avoids impredicativity, by asserting that for any predicate of given arguments defined by quantifying over higher-order functions or classes, there is another co-extensive but predicative function of the same type of arguments.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Eventually the axiom seemed too arbitrary, and was dropped. Linsky's book explores it.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Frege considered definite descriptions to be genuine singular terms [Frege, by Fitting/Mendelsohn]
     Full Idea: Frege (1893) considered a definite description to be a genuine singular term (as we do), so that a sentence like 'The present King of France is bald' would have the same logical form as 'Harry Truman is bald'.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by M Fitting/R Mendelsohn - First-Order Modal Logic
     A reaction: The difficulty is what the term refers to, and they embrace a degree of Meinongianism - that is that non-existent objects can still have properties attributed to them, and so can be allowed some sort of 'existence'.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Definite descriptions theory eliminates the King of France, but not the Queen of England [Linsky,B]
     Full Idea: The theory of definite descriptions may eliminate apparent commitment to such entities as the present King of France, but certainly not to the present Queen of England.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7.3)
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Contradiction arises from Frege's substitutional account of second-order quantification [Dummett on Frege]
     Full Idea: The contradiction in Frege's system is due to the presence of second-order quantification, ..and Frege's explanation of the second-order quantifier, unlike that which he provides for the first-order one, appears to be substitutional rather than objectual.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], §25) by Michael Dummett - Frege philosophy of mathematics Ch.17
     A reaction: In Idea 9871 Dummett adds the further point that Frege lacks a clear notion of the domain of quantification. At this stage I don't fully understand this idea, but it is clearly of significance, so I will return to it.
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionalism means what is true of a function is true of coextensive functions [Linsky,B]
     Full Idea: With the principle of extensionality anything true of one propositional functions will be true of every coextensive one.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities, such as lengths or masses [Frege]
     Full Idea: If 'number' is the referent of a numerical symbol, a real number is the same as a ratio of quantities. ...A length can have to another length the same ratio as a mass to another mass.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], III.1.73), quoted by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
     A reaction: This is part of a critique of Cantor and the Cauchy series approach. Interesting that Frege, who is in the platonist camp, is keen to connect the real numbers with natural phenomena. He is always keen to keep touch with the application of mathematics.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
We can't prove everything, but we can spell out the unproved, so that foundations are clear [Frege]
     Full Idea: It cannot be demanded that everything be proved, because that is impossible; but we can require that all propositions used without proof be expressly declared as such, so that we can see distinctly what the whole structure rests upon.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.2), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 7 'What'
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Frege defined number in terms of extensions of concepts, but needed Basic Law V to explain extensions [Frege, by Hale/Wright]
     Full Idea: Frege opts for his famous definition of numbers in terms of extensions of the concept 'equal to the concept F', but he then (in 'Grundgesetze') needs a theory of extensions or classes, which he provided by means of Basic Law V.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by B Hale / C Wright - Intro to 'The Reason's Proper Study' §1
Frege ignored Cantor's warning that a cardinal set is not just a concept-extension [Tait on Frege]
     Full Idea: Cantor pointed out explicitly to Frege that it is a mistake to take the notion of a set (i.e. of that which has a cardinal number) to simply mean the extension of a concept. ...Frege's later assumption of this was an act of recklessness.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by William W. Tait - Frege versus Cantor and Dedekind III
     A reaction: ['recklessness' is on p.61] Tait has no sympathy with the image of Frege as an intellectual martyr. Frege had insufficient respect for a great genius. Cantor, crucially, understood infinity much better than Frege.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
My Basic Law V is a law of pure logic [Frege]
     Full Idea: I hold that my Basic Law V is a law of pure logic.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.4), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: This is, of course, the notorious law which fell foul of Russell's Paradox. It is said to be pure logic, even though it refers to things that are F and things that are G.
The task of logicism was to define by logic the concepts 'number', 'successor' and '0' [Linsky,B]
     Full Idea: The problem for logicism was to find definitions of the primitive notions of Peano's theory, number, successor and 0, in terms of logical notions, so that the postulates could then be derived by logic alone.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7)
     A reaction: Both Frege and Russell defined numbers as equivalence classes. Successor is easily defined (in various ways) in set theory. An impossible set can exemplify zero. The trouble for logicism is this all relies on sets.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Higher types are needed to distinguished intensional phenomena which are coextensive [Linsky,B]
     Full Idea: The higher types are needed for intensional phenomena, cases where the same class is picked out by distinct propositional functions.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.4)
     A reaction: I take it that in this way 'x is renate' can be distinguished from 'x is cordate', a task nowadays performed by possible worlds.
Types are 'ramified' when there are further differences between the type of quantifier and its range [Linsky,B]
     Full Idea: The types is 'ramified' because there are further differences between the type of a function defined in terms of a quantifier ranging over other functions and the type of those other functions, despite the functions applying to the same simple type.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Not sure I understand this, but it evidently created difficulties for dealing with actual mathematics, and Ramsey showed how you could manage without the ramifications.
The ramified theory subdivides each type, according to the range of the variables [Linsky,B]
     Full Idea: The original ramified theory of types ...furthern subdivides each of the types of the 'simple' theory according to the range of the bound variables used in the definition of each propositional function.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6)
     A reaction: For a non-intiate like me it certainly sounds disappointing that such a bold and neat theory because a tangle of complications. Ramsey and Russell in the 1920s seem to have dropped the ramifications.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Did logicism fail, when Russell added three nonlogical axioms, to save mathematics? [Linsky,B]
     Full Idea: It is often thought that Logicism was a failure, because after Frege's contradiction, Russell required obviously nonlogical principles, in order to develop mathematics. The axioms of Reducibility, Infinity and Choice are cited.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6)
     A reaction: Infinity and Choice remain as axioms of the standard ZFC system of set theory, which is why set theory is always assumed to be 'up to its neck' in ontological commitments. Linsky argues that Russell saw ontology in logic.
For those who abandon logicism, standard set theory is a rival option [Linsky,B]
     Full Idea: ZF set theory is seen as a rival to logicism as a foundational scheme. Set theory is for those who have given up the project of reducing mathematics to logic.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.1)
     A reaction: Presumably there are other rivals. Set theory has lots of ontological commitments. One could start at the other end, and investigate the basic ontological commitments of arithmetic. I have no idea what those might be.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Construct properties as sets of objects, or say an object must be in the set to have the property [Linsky,B]
     Full Idea: Rather than directly constructing properties as sets of objects and proving neat facts about properties by proxy, we can assert biconditionals, such as that an object has a property if and only if it is in a certain set.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7.6)
     A reaction: Linsky is describing Russell's method of logical construction. I'm not clear what is gained by this move, but at least it is a variant of the usual irritating expression of properties as sets of objects.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
A concept is a function mapping objects onto truth-values, if they fall under the concept [Frege, by Dummett]
     Full Idea: In later Frege, a concept could be taken as a particular case of a function, mapping every object on to one of the truth-values (T or F), according as to whether, as we should ordinarily say, that object fell under the concept or not.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Michael Dummett - The Philosophy of Mathematics 3.5
     A reaction: As so often in these attempts at explanation, this sounds circular. You can't decide whether an object truly falls under a concept, if you haven't already got the concept. His troubles all arise (I say) because he scorns abstractionist accounts.
Frege took the study of concepts to be part of logic [Frege, by Shapiro]
     Full Idea: Frege took the study of concepts and their extensions to be within logic.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Stewart Shapiro - Foundations without Foundationalism 7.1
     A reaction: This is part of the plan to make logic a universal language (see Idea 13664). I disagree with this, and with the general logicist view of the position of logic. The logical approach thins concepts out. See Deleuze/Guattari's horror at this.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Lewis later proposed the axioms at the intersection of the best theories (which may be few) [Mumford on Lewis]
     Full Idea: Later Lewis said we must choose between the intersection of the axioms of the tied best systems. He chose for laws the axioms that are in all the tied systems (but then there may be few or no axioms in the intersection).
     From: comment on David Lewis (Subjectivist's Guide to Objective Chance [1980], p.124) by Stephen Mumford - Laws in Nature