Combining Texts

All the ideas for 'Identity and Spatio-Temporal Continuity', 'The Boundary Stones of Thought' and 'What Required for Foundation for Maths?'

unexpand these ideas     |    start again     |     specify just one area for these texts


69 ideas

1. Philosophy / E. Nature of Metaphysics / 6. Metaphysics as Conceptual
Logic doesn't have a metaphysical basis, but nor can logic give rise to the metaphysics [Rumfitt]
     Full Idea: There is surely no metaphysical basis for logic, but equally there is no logical basis for metaphysics, if that implies that we can settle the choice of logic in advance of settling any seriously contested metaphysical-cum-semantic issues.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.5)
     A reaction: Is this aimed at Tim Williamson's book on treating modal logic as metaphysics? I agree with the general idea that logic won't deliver a metaphysics. I might want to defend a good metaphysics giving rise to a good logic.
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
3. Truth / A. Truth Problems / 1. Truth
The idea that there are unrecognised truths is basic to our concept of truth [Rumfitt]
     Full Idea: The realist principle that a statement may be true even though no one is able to recognise its truth is so deeply embedded in our ordinary conception of truth that any account that flouts it is liable to engender confusion.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 5.1)
3. Truth / B. Truthmakers / 7. Making Modal Truths
'True at a possibility' means necessarily true if what is said had obtained [Rumfitt]
     Full Idea: A statement is 'true at a possibility' if, necessarily, things would have been as the statement (actually) says they are, had the possibility obtained.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6.6)
     A reaction: This is deliberately vague about what a 'possibility' is, but it is intended to be more than a property instantiation, and less than a possible world.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
     Full Idea: The classical semantics of natural language propositions says 1) valid arguments preserve truth, 2) no statement is both true and false, 3) each statement is either true or false, 4) the familiar truth tables.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
'Absolute necessity' would have to rest on S5 [Rumfitt]
     Full Idea: If there is such a notion as 'absolute necessity', its logic is surely S5.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: There are plenty of people (mainly in the strict empiricist tradition) who don't believe in 'absolute' necessity.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
     Full Idea: Although intuitionistic propositional and first-order logics are sub-systems of the corresponding classical systems, intuitionistic second-order logic affirms the negations of some classical theorems.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
     Full Idea: Double Negation Elimination is a rule of inference which the classicist accepts without restriction, but which the intuitionist accepts only for decidable propositions.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: This cures me of my simplistic understanding that intuitionists just reject the rules about double negation.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
     Full Idea: Many set theorists doubt if the Generalised Continuum Hypothesis must be either true or false; certainly, its bivalence is far from obvious. All the same, almost all set theorists use classical logic in their proofs.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.2)
     A reaction: His point is that classical logic is usually taken to rest on bivalence. He offers the set theorists a helping hand, by defending classical logic without resorting to bivalence.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
     Full Idea: We are doomed to postulate an infinite sequence of successively stronger axiom systems as we try to spell out what is involved in iterating the power set operation 'as far as possible'.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.3)
     A reaction: [W.W. Tait is behind this idea] The problem with set theory, then, especially as a foundation of mathematics, is that it doesn't just expand, but has to keep reinventing itself. The 'large cardinal axioms' are what is referred to.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
     Full Idea: There seem strong grounds for rejecting the thesis that a set consists of its members. For one thing, the empty set is a perpetual embarrassment for the thesis.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: Rumfitt also says that if 'red' has an extension, then membership of that set must be vague. Extensional sets are precise because their objects are decided in advance, but intensional (or logical) sets, decided by a predicate, can be vague.
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
     Full Idea: Vagueness in respect of membership is consistent with determinacy of the set's identity, so long as a set's identity is taken to consist, not in its having such-and-such members, but in its being the extension of the concept A.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: To be determinate, it must be presumed that there is some test which will decide what falls under the concept. The rule can say 'if it is vague, reject it' or 'if it is vague, accept it'. Without one of those, how could the set have a clear identity?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
     Full Idea: Someone who is sympathetic to the thesis that the totality of sets is not well-defined ought to concede that we have no reason to think that the Power Set Axiom is true.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.6)
     A reaction: The point is that it is only this Axiom which generates the vast and expanding totality. In principle it is hard, though, to see what is intrinsically wrong with the operation of taking the power set of a set. Hence 'limitation of size'?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is higher-order laws which can expand the range of any sort of deduction [Rumfitt]
     Full Idea: On the conception of logic recommended here, logical laws are higher-order laws that can be applied to expand the range of any deductive principles.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: You need the concept of a 'deductive principle' to get this going, but I take it that might be directly known, rather than derived from a law.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic rules cannot be proved, but various lines of attack can be repelled [Rumfitt]
     Full Idea: There is not the slightest prospect of proving that the rules of classical logic are sound. ….All that the defender of classical logic can do is scrutinize particular attacks and try to repel them.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: This is the agenda for Rumfitt's book.
The case for classical logic rests on its rules, much more than on the Principle of Bivalence [Rumfitt]
     Full Idea: I think it is a strategic mistake to rest the case for classical logic on the Principle of Bivalence: the soundness of the classical logic rules is far more compelling than the truth of Bivalence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: The 'rules' to which he is referring are those of 'natural deduction', which make very few assumptions, and are intended to be intuitively appealing.
If truth-tables specify the connectives, classical logic must rely on Bivalence [Rumfitt]
     Full Idea: If we specify the senses of the connectives by way of the standard truth-tables, then we must justify classical logic only by appeal to the Principle of Bivalence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7)
     A reaction: Rumfitt proposes to avoid the truth-tables, and hence not to rely on Bivalence for his support of classical logic. He accepts that Bivalence is doubtful, citing the undecidability of the Continuum Hypothesis as a problem instance.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence is a relation that can extended into further statements [Rumfitt]
     Full Idea: Logical consequence, I argue, is distinguished from other implication relations by the fact that logical laws may be applied in extending any implication relation so that it applies among some complex statements involving logical connectives.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: He offers implication in electronics as an example of a non-logical implication relation. This seems to indicate that logic must be monotonic, that consequence is transitive, and that the Cut Law always applies.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Normal deduction presupposes the Cut Law [Rumfitt]
     Full Idea: Our deductive practices seem to presuppose the Cut Law.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.3)
     A reaction: That is, if you don't believe that deductions can be transitive (and thus form a successful chain of implications), then you don't really believe in deduction. It remains a well known fact that you can live without the Cut Law.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
When faced with vague statements, Bivalence is not a compelling principle [Rumfitt]
     Full Idea: I do not regard Bivalence, when applied to vague statements, as an intuitively compelling principle which we ought to try to preserve.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.7)
     A reaction: The point of Rumfitt's book is to defend classical logic despite failures of bivalence. He also cites undecidable concepts such as the Continuum Hypothesis.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
In specifying a logical constant, use of that constant is quite unavoidable [Rumfitt]
     Full Idea: There is no prospect whatever of giving the sense of a logical constant without using that very constant, and much else besides, in the metalinguistic principle that specifies that sense.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
     Full Idea: 'Introduction rules' state the conditions under which one may deduce a conclusion whose dominant logical operator is the connective. 'Elimination rules' state what may be deduced from some premises, where the major premise is dominated by the connective.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: So Introduction gives conditions for deduction, and Elimination says what can actually be deduced. If my magic wand can turn you into a frog (introduction), and so I turn you into a frog, how does that 'eliminate' the wand?
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are just the assumption-free by-products of logical rules [Rumfitt]
     Full Idea: Gentzen's way of formalising logic has accustomed people to the idea that logical truths are simply the by-products of logical rules, that arise when all the assumptions on which a conclusion rests have been discharged.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.5)
     A reaction: This is the key belief of those who favour the natural deduction account of logic. If you really believe in separate logic truths, then you can use them as axioms.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Monotonicity means there is a guarantee, rather than mere inductive support [Rumfitt]
     Full Idea: Monotonicity seems to mark the difference between cases in which a guarantee obtains and those where the premises merely provide inductive support for a conclusion.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.3)
     A reaction: Hence it is plausible to claim that 'non-monotonic logic' is a contradiction in terms.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Maybe an ordinal is a property of isomorphic well-ordered sets, and not itself a set [Rumfitt]
     Full Idea: Menzel proposes that an ordinal is something isomorphic well-ordered sets have in common, so while an ordinal can be represented as a set, it is not itself a set, but a 'property' of well-ordered sets.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.2)
     A reaction: [C.Menzel 1986] This is one of many manoeuvres available if you want to distance mathematics from set theory.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals do not stand in a determinate order relation to zero [Rumfitt]
     Full Idea: Infinitesimals do not stand in a determinate order relation to zero: we cannot say an infinitesimal is either less than zero, identical to zero, or greater than zero. ….Infinitesimals are so close to zero as to be theoretically indiscriminable from it.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.4)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
Cantor and Dedekind aimed to give analysis a foundation in set theory (rather than geometry) [Rumfitt]
     Full Idea: One of the motivations behind Cantor's and Dedekind's pioneering explorations in the field was the ambition to give real analysis a new foundation in set theory - and hence a foundation independent of geometry.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.6)
     A reaction: Rumfitt is inclined to think that the project has failed, although a weaker set theory than ZF might do the job (within limits).
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
'Ultimate sortals' cannot explain ontological categories [Westerhoff on Wiggins]
     Full Idea: 'Ultimate sortals' are said to be non-subordinated, disjoint from one another, and uniquely paired with each object. Because of this, the ultimate sortal cannot be a satisfactory explication of the notion of an ontological category.
     From: comment on David Wiggins (Identity and Spatio-Temporal Continuity [1971], p.75) by Jan Westerhoff - Ontological Categories §26
     A reaction: My strong intuitions are that Wiggins is plain wrong, and Westerhoff gives the most promising reasons for my intuition. The simplest point is that objects can obviously belong to more than one category.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
An object that is not clearly red or orange can still be red-or-orange, which sweeps up problem cases [Rumfitt]
     Full Idea: A borderline red-orange object satisfies the disjunctive predicate 'red or orange', even though it satisfies neither 'red' or 'orange'. When applied to adjacent bands of colour, the disjunction 'sweeps up' objects which are reddish-orange.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.5)
     A reaction: Rumfitt offers a formal principle in support of this. There may be a problem with 'adjacent'. Different colour systems will place different colours adjacent to red. In other examples the idea of 'adjacent' may make no sense. Rumfitt knows this!
The extension of a colour is decided by a concept's place in a network of contraries [Rumfitt]
     Full Idea: On Sainsbury's picture, a colour has an extension that it has by virtue of its place in a network of contrary colour classifications. Something is determined to be 'red' by being a colour incompatible with orange, yellow, green, blue, indigo and violet.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.5)
     A reaction: Along with Idea 18839, this gives quite a nice account of vagueness, by requiring a foil to the vague predicate, and using the disjunction of the predicate and its foil to handle anything caught in between them.
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical modalities respect the actual identities of things [Rumfitt]
     Full Idea: The central characteristic mark of metaphysical necessity is that a metaphysical possibility respects the actual identities of things - in a capacious sense of 'thing'.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.4)
     A reaction: He contrast this with logical necessity, and concludes that some truths are metaphysically but not logically necessary, such as 'Hesperus is identical with Phosphorus'. Personally I like the idea of a 'necessity-maker', so that fits.
10. Modality / A. Necessity / 6. Logical Necessity
S5 is the logic of logical necessity [Rumfitt]
     Full Idea: I accept the widely held thesis that S5 is the logic of logical necessity.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6.4 n16)
     A reaction: It seems plausible that S5 is also the logic of metaphysical necessity, but that does not make them the same thing. The two types of necessity have two different grounds.
10. Modality / B. Possibility / 1. Possibility
If two possibilities can't share a determiner, they are incompatible [Rumfitt]
     Full Idea: Two possibilities are incompatible when no possibility determines both.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.1)
     A reaction: This strikes me as just the right sort of language for building up a decent metaphysical picture of the world, which needs to incorporate possibilities as well as actualities.
Since possibilities are properties of the world, calling 'red' the determination of a determinable seems right [Rumfitt]
     Full Idea: Some philosophers describe the colour scarlet as a determination of the determinable red; since the ways the world might be are naturally taken to be properties of the world, it helps to bear this analogy in mind.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6.4)
     A reaction: This fits nicely with the disposition accounts of modality which I favour. Hence being 'coloured' is a real property of objects, even in the absence of the name of its specific colour.
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possibilities are like possible worlds, but not fully determinate or complete [Rumfitt]
     Full Idea: Possibilities are things of the same general character as possible worlds, on one popular conception of the latter. They differ from worlds, though, in that they are not required to be fully determinate or complete.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6)
     A reaction: A rather promising approach to such things, even though a possibility is fairly determinate at its core, but very vague at the edges. It is possible that the UK parliament might be located in Birmingham, for example. Is this world 'complete'?
11. Knowledge Aims / A. Knowledge / 2. Understanding
Medieval logicians said understanding A also involved understanding not-A [Rumfitt]
     Full Idea: Mediaeval logicians had a principle, 'Eadem est scientia oppositorum': in order to attain a clear conception of what it is for A to be the case, one needs to attain a conception of what it is for A not to be the case.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.2)
     A reaction: Presumably 'understanding' has to be a fairly comprehensive grasp of the matter, so understanding the negation sounds like a reasonable requirement for the real thing.
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In English 'evidence' is a mass term, qualified by 'little' and 'more' [Rumfitt]
     Full Idea: In English, the word 'evidence' behaves as a mass term: we speak of someone's having little evidence for an assertion, and of one thinker's having more evidence than another for a claim. One the other hand, we also speak of 'pieces' of evidence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 5.2)
     A reaction: And having 'more' evidence does not mean having a larger number of pieces of evidence, so it really is like an accumulated mass.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We understand conditionals, but disagree over their truth-conditions [Rumfitt]
     Full Idea: It is striking that our understanding of conditionals is not greatly impeded by widespread disagreement about their truth-conditions.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 4.2)
     A reaction: Compare 'if you dig there you might find gold' with 'if you dig there you will definitely find gold'. The second but not the first invites 'how do you know that?', implying truth. Two different ifs.
19. Language / F. Communication / 3. Denial
The truth grounds for 'not A' are the possibilities incompatible with truth grounds for A [Rumfitt]
     Full Idea: The truth-grounds of '¬A' are precisely those possibilities that are incompatible with any truth-ground of A.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.1)
     A reaction: This is Rumfitt's proposal for the semantics of 'not', based on the central idea of a possibility, rather than a possible world. The incompatibility tracks back to an absence of shared grounding.