Combining Texts

All the ideas for 'Wisdom', 'Inexpressible Properties and Propositions' and 'On boundary numbers and domains of sets'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

1. Philosophy / A. Wisdom / 3. Wisdom Deflated
The devil was wise as an angel, and lost no knowledge when he rebelled [Whitcomb]
     Full Idea: The devil is evil but nonetheless wise; he was a wise angel, and through no loss of knowledge, but, rather, through some sort of affective restructuring tried and failed to take over the throne.
     From: Dennis Whitcomb (Wisdom [2011], 'Argument')
     A reaction: ['affective restructuring' indeed! philosophers- don't you love 'em?] To fail at something you try to do suggests a flaw in the wisdom. And the new regime the devil wished to introduce doesn't look like a wise regime. Not convinced.
3. Truth / H. Deflationary Truth / 3. Minimalist Truth
Instances of minimal truth miss out propositions inexpressible in current English [Hofweber]
     Full Idea: A standard objection to minimalist truth is the 'incompleteness objection'. Since there are propositions inexpressible in present English the concept of truth isn't captured by all the instances of the Tarski biconditional.
     From: Thomas Hofweber (Inexpressible Properties and Propositions [2006], 5.3)
     A reaction: Sounds like a good objection.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Zermelo showed that the ZF axioms in 1930 were non-categorical [Zermelo, by Hallett,M]
     Full Idea: Zermelo's paper sets out to show that the standard set-theoretic axioms (what he calls the 'constitutive axioms', thus the ZF axioms minus the axiom of infinity) have an unending sequence of different models, thus that they are non-categorical.
     From: report of Ernst Zermelo (On boundary numbers and domains of sets [1930]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1209
     A reaction: Hallett says later that Zermelo is working with second-order set theory. The addition of an Axiom of Infinity seems to have aimed at addressing the problem, and the complexities of that were pursued by Gödel.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was added when some advanced theorems seemed to need it [Zermelo, by Maddy]
     Full Idea: Zermelo included Replacement in 1930, after it was noticed that the sequence of power sets was needed, and Replacement gave the ordinal form of the well-ordering theorem, and justification for transfinite recursion.
     From: report of Ernst Zermelo (On boundary numbers and domains of sets [1930]) by Penelope Maddy - Believing the Axioms I §1.8
     A reaction: Maddy says that this axiom suits the 'limitation of size' theorists very well, but is not so good for the 'iterative conception'.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Quantification can't all be substitutional; some reference is obviously to objects [Hofweber]
     Full Idea: The view that all quantification is substitutional is not very plausible in general. Some uses of quantifiers clearly seem to have the function to make a claim about a domain of objects out there, no matter how they relate to the terms in our language.
     From: Thomas Hofweber (Inexpressible Properties and Propositions [2006], 2.1)
     A reaction: Robust realists like myself are hardly going to say that quantification is just an internal language game.
5. Theory of Logic / L. Paradox / 3. Antinomies
The antinomy of endless advance and of completion is resolved in well-ordered transfinite numbers [Zermelo]
     Full Idea: Two opposite tendencies of thought, the idea of creative advance and of collection and completion (underlying the Kantian 'antinomies') find their symbolic representation and their symbolic reconciliation in the transfinite numbers based on well-ordering.
     From: Ernst Zermelo (On boundary numbers and domains of sets [1930], §5)
     A reaction: [a bit compressed] It is this sort of idea, from one of the greatest set-theorists, that leads philosophers to think that the philosophy of mathematics may offer solutions to metaphysical problems. As an outsider, I am sceptical.
8. Modes of Existence / B. Properties / 1. Nature of Properties
Since properties have properties, there can be a typed or a type-free theory of them [Hofweber]
     Full Idea: Since properties themselves can have properties there is a well-known division in the theory of properties between those who take a typed and those who take a type-free approach.
     From: Thomas Hofweber (Inexpressible Properties and Propositions [2006], 2.2)
     A reaction: A typed approach would imply restrictions on what it can be a property of. 'Green' is a property of surfaces, 'dark' is a property of colours. My first reaction is to opt for type-free.
19. Language / F. Communication / 6. Interpreting Language / a. Translation
Holism says language can't be translated; the expressibility hypothesis says everything can [Hofweber]
     Full Idea: Holism says that nothing that can be said in one language can be said in another one. The expressibility hypothesis says that everything that can be said in one language can be said in every other one.
     From: Thomas Hofweber (Inexpressible Properties and Propositions [2006], 6.4)
     A reaction: Obviously expressibility would only refer to reasonably comprehensive languages (with basic logical connectives, for example). Personally I vote for the expressibility hypothesis, which Hofweber seems to favour.