Combining Texts

All the ideas for 'fragments/reports', 'Logicism Revisited' and 'Review of Chihara 'Struct. Accnt of Maths''

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
The If-thenist view only seems to work for the axiomatised portions of mathematics [Musgrave]
     Full Idea: The If-thenist view seems to apply straightforwardly only to the axiomatised portions of mathematics.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: He cites Lakatos to show that cutting-edge mathematics is never axiomatised. One might reply that if the new mathematics is any good then it ought to be axiomatis-able (barring Gödelian problems).
Perhaps If-thenism survives in mathematics if we stick to first-order logic [Musgrave]
     Full Idea: If we identify logic with first-order logic, and mathematics with the collection of first-order theories, then maybe we can continue to maintain the If-thenist position.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: The problem is that If-thenism must rely on rules of inference. That seems to mean that what is needed is Soundness, rather than Completeness. That is, inference by the rules must work properly.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths may contain non-logical notions, as in 'all men are men' [Musgrave]
     Full Idea: Containing only logical notions is not a necessary condition for being a logical truth, since a logical truth such as 'all men are men' may contain non-logical notions such as 'men'.
     From: Alan Musgrave (Logicism Revisited [1977], §3)
     A reaction: [He attributes this point to Russell] Maybe it is only a logical truth in its general form, as ∀x(x=x). Of course not all 'banks' are banks.
A statement is logically true if it comes out true in all interpretations in all (non-empty) domains [Musgrave]
     Full Idea: The standard modern view of logical truth is that a statement is logically true if it comes out true in all interpretations in all (non-empty) domains.
     From: Alan Musgrave (Logicism Revisited [1977], §3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
No two numbers having the same successor relies on the Axiom of Infinity [Musgrave]
     Full Idea: The axiom of Peano which states that no two numbers have the same successor requires the Axiom of Infinity for its proof.
     From: Alan Musgrave (Logicism Revisited [1977], §4 n)
     A reaction: [He refers to Russell 1919:131-2] The Axiom of Infinity is controversial and non-logical.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is the standard background for modern mathematics [Burgess]
     Full Idea: In present-day mathematics, it is set theory that serves as the background theory in which other branches of mathematics are developed.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: [He cites Bourbaki as an authority for this] See Benacerraf for a famous difficulty here, when you actually try to derive an ontology from the mathematicians' working practices.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralists take the name 'R' of the reals to be a variable ranging over structures, not a structure [Burgess]
     Full Idea: On the structuralist interpretation, theorems of analysis concerning the real numbers R are about all complete ordered fields. So R, which appears to be the name of a specific structure, is taken to be a variable ranging over structures.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: Since I am beginning to think that nearly all linguistic expressions should be understood as variables, I find this very appealing, even if Burgess hates it. Terms slide and drift, and are vague, between variable and determinate reference.
There is no one relation for the real number 2, as relations differ in different models [Burgess]
     Full Idea: One might meet the 'Van Inwagen Problem' by saying that the intrinsic properties of the object playing the role of 2 will differ from one model to another, so that no statement about the intrinsic properties of 'the' real numbers will make sense.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §5)
     A reaction: There seems to be a potential confusion among opponents of structuralism between relations at the level of actual mathematical operations, and generalisations about relations, which are captured in the word 'patterns'. Call them 'meta-relations'?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If set theory is used to define 'structure', we can't define set theory structurally [Burgess]
     Full Idea: It is to set theory that one turns for the very definition of 'structure', ...and this creates a problem of circularity if we try to impose a structuralist interpretation on set theory.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: This seems like a nice difficulty, especially if, like Shapiro, you wade in and try to give a formal account of structures and patterns. Resnik is more circumspect and vague.
Abstract algebra concerns relations between models, not common features of all the models [Burgess]
     Full Idea: Abstract algebra, such as group theory, is not concerned with the features common to all models of the axioms, but rather with the relationships among different models of those axioms (especially homomorphic relation functions).
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: It doesn't seem to follow that structuralism can't be about the relations (or patterns) found when abstracting away and overviewing all the models. One can study family relations, or one can study kinship in general.
How can mathematical relations be either internal, or external, or intrinsic? [Burgess]
     Full Idea: The 'Van Inwagen Problem' for structuralism is of explaining how a mathematical relation (such as set membership, or the ratios of an ellipse) can fit into one of the three scholastics types of relations: are they internal, external, or intrinsic?
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §5)
     A reaction: The difficulty is that mathematical objects seem to need intrinsic properties to get any of these three versions off the ground (which was Russell's complaint against structures).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism seems to exclude all creative, growing mathematics [Musgrave]
     Full Idea: Formalism seems to exclude from consideration all creative, growing mathematics.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: [He cites Lakatos in support] I am not immediately clear why spotting the remote implications of a formal system should be uncreative. The greatest chess players are considered to be highly creative and imaginative.
Formalism is a bulwark of logical positivism [Musgrave]
     Full Idea: Formalism is a bulwark of logical positivist philosophy.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: Presumably if you drain all the empirical content out of arithmetic and geometry, you are only left with the bare formal syntax, of symbols and rules. That seems to be as analytic as you can get.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Logical positivists adopted an If-thenist version of logicism about numbers [Musgrave]
     Full Idea: Logical positivists did not adopt old-style logicism, but rather logicism spiced with varying doses of If-thenism.
     From: Alan Musgrave (Logicism Revisited [1977], §4)
     A reaction: This refers to their account of mathematics as a set of purely logical truths, rather than being either empirical, or a priori synthetic.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / k. Ethics from nature
The goal is rationality in the selection of things according to nature [Diogenes of Babylon, by Blank]
     Full Idea: Diogenes of Babylon defined the goal to be rationality in the selection and rejection of the things according to nature.
     From: report of Diogenes (Bab) (fragments/reports [c.180 BCE]) by D.L. Blank - Diogenes of Babylon
     A reaction: This captures the central Stoic idea quite nicely. 'Live according to nature', but this always meant 'live according to reason', because that is (as Aristotle had taught) the essence of our nature. This only makes sense if reason and nature coincide.
22. Metaethics / C. The Good / 1. Goodness / a. Form of the Good
The good is what is perfect by nature [Diogenes of Babylon, by Blank]
     Full Idea: Diogenes of Babylon defined the good as what is perfect by nature.
     From: report of Diogenes (Bab) (fragments/reports [c.180 BCE]) by D.L. Blank - Diogenes of Babylon
     A reaction: This might come close to G.E. Moore's Ideal Utilitarianism, but its dependence on the rather uneasy of concept of 'perfection' makes it questionable. Personally I find it appealing. I wish we had Diogenes' explanation.
23. Ethics / C. Virtue Theory / 3. Virtues / c. Justice
Justice is a disposition to distribute according to desert [Diogenes of Babylon, by Blank]
     Full Idea: Diogenes of Babylon defined justice as the disposition which distributes to everyone what he deserves.
     From: report of Diogenes (Bab) (fragments/reports [c.180 BCE]) by D.L. Blank - Diogenes of Babylon
     A reaction: The questions that arise would be 'what does a new-born baby deserve?', and 'what do animals deserve?', and 'does the lowest and worst of criminals deserve anything at all?'