Combining Texts

All the ideas for 'The Very Idea of a Conceptual Scheme', 'Conditionals' and 'On Formally Undecidable Propositions'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

3. Truth / B. Truthmakers / 12. Rejecting Truthmakers
Saying truths fit experience adds nothing to truth; nothing makes sentences true [Davidson]
     Full Idea: The notion of fitting the totality of experience ...adds nothing intelligible to the simple concept of being true. ....Nothing, ...no thing, makes sentences and theories true: not experience, not surface irritations, not the world.
     From: Donald Davidson (The Very Idea of a Conceptual Scheme [1974], p.11), quoted by Willard Quine - On the Very Idea of a Third Dogma p.39
     A reaction: If you don't have a concept of what normally makes a sentence true, I don't see how you go about distinguishing what is true from what is false. You can't just examine the sentence to see if it has the 'primitive' property of truth. Holism is involved....
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
     Full Idea: Gödel's proof wrought an abrupt turn in the philosophy of mathematics. We had supposed that truth, in mathematics, consisted in provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Willard Quine - Forward to Gödel's Unpublished
     A reaction: This explains the crisis in the early 1930s, which Tarski's theory appeared to solve.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
'¬', '&', and 'v' are truth functions: the truth of the compound is fixed by the truth of the components [Jackson]
     Full Idea: It is widely agreed that '¬', '&', and 'v' are 'truth functions': the truth value of a compound sentence formed using them is fully determined by the truth value or values of the component sentences.
     From: Frank Jackson (Conditionals [2006], 'Equiv')
     A reaction: A candidate for not being a truth function might be a conditional →, where the arrow adds something over and above the propositions it connects. The relationship has an additional truth value? Does A depend on B?
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
     Full Idea: The inherent limitations of the axiomatic method were first brought to light by the incompleteness theorems.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Koellner - On the Question of Absolute Undecidability 1.1
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
     Full Idea: Second Incompleteness Theorem: roughly, nice theories that include enough basic arithmetic can't prove their own consistency.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.5
     A reaction: On the face of it, this sounds less surprising than the First Theorem. Philosophers have often noticed that it seems unlikely that you could use reason to prove reason, as when Descartes just relies on 'clear and distinct ideas'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
     Full Idea: Gödel showed PA cannot be proved consistent from with PA. But 'reflection principles' can be added, which are axioms partially expressing the soundness of PA, by asserting what is provable. A Global Reflection Principle asserts full soundness.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Halbach,V/Leigh,G.E. - Axiomatic Theories of Truth (2013 ver) 1.2
     A reaction: The authors point out that this needs a truth predicate within the language, so disquotational truth won't do, and there is a motivation for an axiomatic theory of truth.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
     Full Idea: Gödel's far-reaching work on the nature of logic and formal systems reveals that there can be no single consistent theory from which all mathematical truths can be derived.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.8
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
     Full Idea: Gödel's theorem states that either arithmetic is incomplete, or it is inconsistent.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.7
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
     Full Idea: First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2
     A reaction: This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
     Full Idea: The vast continent of arithmetical truth cannot be brought into systematic order by laying down a fixed set of axioms and rules of inference from which every true mathematical statement can be formally derived. For some this was a shocking revelation.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by E Nagel / JR Newman - Gödel's Proof VII.C
     A reaction: Good news for philosophy, I'd say. The truth cannot be worked out by mechanical procedures, so it needs the subtle and intuitive intelligence of your proper philosopher (Parmenides is the role model) to actually understand reality.
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
     Full Idea: Gödel's Second Incompleteness Theorem says that true unprovable sentences are clearly semantic consequences of the axioms in the sense that they are necessarily true if the axioms are true. So semantic consequence outruns provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Robert Hanna - Rationality and Logic 5.3
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
     Full Idea: First Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S is syntactically incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Gödel found a single sentence, effectively saying 'I am unprovable in S', which is neither provable nor refutable in S.
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
     Full Idea: Second Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S cannot prove its own consistency
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems much less surprising than the First Theorem (though it derives from it). It was always kind of obvious that you couldn't use reason to prove that reason works (see, for example, the Cartesian Circle).
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
     Full Idea: The original Gödel construction gives us a sentence that a theory shows is true if and only if it satisfies the condition of being unprovable-in-that-theory.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 20.5
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
     Full Idea: An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
     A reaction: Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
     Full Idea: Gödel defended impredicative definitions on grounds of ontological realism. From that perspective, an impredicative definition is a description of an existing entity with reference to other existing entities.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Stewart Shapiro - Thinking About Mathematics 5.3
     A reaction: This is why constructivists must be absolutely precise about definition, where realists only have to do their best. Compare building a car with painting a landscape.
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
Possible worlds for subjunctives (and dispositions), and no-truth for indicatives? [Jackson]
     Full Idea: Subjunctive conditionals are intimately connected with dispositional properties and causation. ...Consequently, a position some find attractive is that possible worlds theory applies to subjunctives, while the no-truth theory applies to indicatives.
     From: Frank Jackson (Conditionals [2006], 'Indicative')
     A reaction: My intuitions are to reject this and favour a unified account, where both sorts of conditionals are mappings of the relationships among the facts of actuality. Nice slogan!
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Modus ponens requires that A→B is F when A is T and B is F [Jackson]
     Full Idea: Modus ponens is intuitively valid, but in A,A→B|B if A is true and B is false that must be because A→B is false. So A→B is false when A is true and B is false.
     From: Frank Jackson (Conditionals [2006], 'Equiv')
     A reaction: This is his first step in showing how the truth functional account of A→B acquires its truth table. If you are giving up the truth functional view of conditionals, presumably you are not also going to give up modus ponens?
When A and B have the same truth value, A→B is true, because A→A is a logical truth [Jackson]
     Full Idea: (A→A) is a logical truth, so some conditionals with antecedent and consequent the same truth value are true. But if '→' is a truth function, that will be true for all cases. Hence whenever A and B are alike in truth value, (A→B) is true.
     From: Frank Jackson (Conditionals [2006], 'Equiv')
     A reaction: His second step in demonstrating the truth table for →, assuming it is truth functional.
(A&B)→A is a logical truth, even if antecedent false and consequent true, so it is T if A is F and B is T [Jackson]
     Full Idea: (A&B)→A is a logical truth, but A can be true and B false, so that (A&B) is false. So some conditionals with false antecedent and true consequent are true. If → is a truth function, then whenever A is false and B is true (A→B) is true.
     From: Frank Jackson (Conditionals [2006], 'Equiv')
     A reaction: This is his third and final step in showing the truth table of → if it is truth functional.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
In the possible worlds account of conditionals, modus ponens and modus tollens are validated [Jackson]
     Full Idea: In the possible worlds account modus ponens is validated (the closest world, the actual, is a B-world just if B is true), and modus tollens is validated (if B is false, the actual world is not an A-world, so A is false).
     From: Frank Jackson (Conditionals [2006], 'Famous')
     A reaction: [see Jackson for slightly fuller versions] This looks like a minimal requirement for a decent theory of conditionals, so Jackson explains the attractions of the possible worlds view very persuasively.
Only assertions have truth-values, and conditionals are not proper assertions [Jackson]
     Full Idea: In the no-truth theory of conditionals they have justified assertion or acceptability conditions but not truth conditions. ...The motivation is that only assertions have truth values, and conditionals are arguments, not proper assertions.
     From: Frank Jackson (Conditionals [2006], 'No-truth')
     A reaction: Once I trim this idea down to its basics, it suddenly looks very persuasive. Except that I am inclined to think that conditional truths do state facts about the world - perhaps as facts about how more basic truths are related to each other.
Possible worlds account, unlike A⊃B, says nothing about when A is false [Jackson]
     Full Idea: In the possible worlds account of conditionals A⊃B is not sufficient for A→B. If A is false then A⊃B is true, but here nothing is implied about whether the world most like the actual world except that A is true is or is not a B-world.
     From: Frank Jackson (Conditionals [2006], 'Possible')
     A reaction: The possible worlds account seems to be built on Ramsey's idea of just holding A true and seeing what you get. Being committed to B being automatically true if A is false seems highly counterintuitive.
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
We can't insist that A is relevant to B, as conditionals can express lack of relevance [Jackson]
     Full Idea: One addition to the truth functional account of conditionals is that A be somehow relevant to B. However, sometimes we use conditionals to express lack of relevance, as in 'If Fred works he will fail, and if Fred doesn't work he will fail'.
     From: Frank Jackson (Conditionals [2006], 'Possible')
     A reaction: This certainly seems to put paid to an attractive instant solution to the problem.
12. Knowledge Sources / D. Empiricism / 5. Empiricism Critique
Without the dualism of scheme and content, not much is left of empiricism [Davidson]
     Full Idea: The third dogma of empiricism is the dualism of scheme and content, of organizing system and something waiting to be organized, which cannot be made intelligible and defensible. If we give it up, it is not clear that any distinctive empiricism remains.
     From: Donald Davidson (The Very Idea of a Conceptual Scheme [1974], p.189)
     A reaction: The first two dogmas were 'analyticity' and 'reductionism', as identified by Quine in 1953. Presumably Hume's Principles of Association (Idea 2189) would be an example of a scheme. A key issue is whether there is any 'pure' content.
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
Different points of view make sense, but they must be plotted on a common background [Davidson]
     Full Idea: Different points of view make sense, but only if there is a common co-ordinate system on which to plot them.
     From: Donald Davidson (The Very Idea of a Conceptual Scheme [1974], p.184)
     A reaction: This seems right to me. I am very struck by the close similarities between people from wildly differing cultural backgrounds, as seen, for example, at the Olympic Games.
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
     Full Idea: Gödel in his completeness theorem for first-order logic showed that a certain set of syntactically specifiable rules was adequate to capture all first-order valid arguments. No semantics (e.g. reference, truth, validity) was necessary.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.2
     A reaction: This implies that a logic machine is possible, but we shouldn't raise our hopes for proper rationality. Validity can be shown for purely algebraic arguments, but rationality requires truth as well as validity, and that needs propositions and semantics.
19. Language / F. Communication / 6. Interpreting Language / b. Indeterminate translation
Criteria of translation give us the identity of conceptual schemes [Davidson]
     Full Idea: Studying the criteria of translation is a way of focusing on criteria of identity for conceptual schemes.
     From: Donald Davidson (The Very Idea of a Conceptual Scheme [1974], p.184)
     A reaction: This is why it was an inspired idea of Quine's to make translation a central topic in philosophy. We must be cautious, though, about saying that the language is the conceptual scheme, as that leaves animals with no scheme at all.