Combining Texts

All the ideas for 'Conditionals', 'Alfred Tarski: life and logic' and 'Logic and Conversation'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is consistent with the other axioms of set theory [Feferman/Feferman]
     Full Idea: In 1938 Gödel proved that the Axiom of Choice is consistent with the other axioms of set theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: Hence people now standardly accept ZFC, rather than just ZF.
Axiom of Choice: a set exists which chooses just one element each of any set of sets [Feferman/Feferman]
     Full Idea: Zermelo's Axiom of Choice asserts that for any set of non-empty sets that (pairwise) have no elements in common, then there is a set that 'simultaneously chooses' exactly one element from each set. Note that this is an existential claim.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The Axiom is now widely accepted, after much debate in the early years. Even critics of the Axiom turn out to be relying on it.
Platonist will accept the Axiom of Choice, but others want criteria of selection or definition [Feferman/Feferman]
     Full Idea: The Axiom of Choice seems clearly true from the Platonistic point of view, independently of how sets may be defined, but is rejected by those who think such existential claims must show how to pick out or define the object claimed to exist.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The typical critics are likely to be intuitionists or formalists, who seek for both rigour and a plausible epistemology in our theory.
The Trichotomy Principle is equivalent to the Axiom of Choice [Feferman/Feferman]
     Full Idea: The Trichotomy Principle (any number is less, equal to, or greater than, another number) turned out to be equivalent to the Axiom of Choice.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: [He credits Sierpinski (1918) with this discovery]
Cantor's theories needed the Axiom of Choice, but it has led to great controversy [Feferman/Feferman]
     Full Idea: The Axiom of Choice is a pure existence statement, without defining conditions. It was necessary to provide a foundation for Cantor's theory of transfinite cardinals and ordinal numbers, but its nonconstructive character engendered heated controversy.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure is a 'model' when the axioms are true. So which of the structures are models? [Feferman/Feferman]
     Full Idea: A structure is said to be a 'model' of an axiom system if each of its axioms is true in the structure (e.g. Euclidean or non-Euclidean geometry). 'Model theory' concerns which structures are models of a given language and axiom system.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This strikes me as the most interesting aspect of mathematical logic, since it concerns the ways in which syntactic proof-systems actually connect with reality. Tarski is the central theoretician here, and his theory of truth is the key.
Tarski and Vaught established the equivalence relations between first-order structures [Feferman/Feferman]
     Full Idea: In the late 1950s Tarski and Vaught defined and established basic properties of the relation of elementary equivalence between two structures, which holds when they make true exactly the same first-order sentences. This is fundamental to model theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This is isomorphism, which clarifies what a model is by giving identity conditions between two models. Note that it is 'first-order', and presumably founded on classical logic.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim-Skolem says if the sentences are countable, so is the model [Feferman/Feferman]
     Full Idea: The Löwenheim-Skolem Theorem, the earliest in model theory, states that if a countable set of sentences in a first-order language has a model, then it has a countable model.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: There are 'upward' (sentences-to-model) and 'downward' (model-to-sentences) versions of the theory.
Löwenheim-Skolem Theorem, and Gödel's completeness of first-order logic, the earliest model theory [Feferman/Feferman]
     Full Idea: Before Tarski's work in the 1930s, the main results in model theory were the Löwenheim-Skolem Theorem, and Gödel's establishment in 1929 of the completeness of the axioms and rules for the classical first-order predicate (or quantificational) calculus.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a sentence holds in every model of a theory, then it is logically derivable from the theory [Feferman/Feferman]
     Full Idea: Completeness is when, if a sentences holds in every model of a theory, then it is logically derivable from that theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Recursion theory' concerns what can be solved by computing machines [Feferman/Feferman]
     Full Idea: 'Recursion theory' is the subject of what can and cannot be solved by computing machines
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Ch.9)
     A reaction: This because 'recursion' will grind out a result step-by-step, as long as the steps will 'halt' eventually.
Both Principia Mathematica and Peano Arithmetic are undecidable [Feferman/Feferman]
     Full Idea: In 1936 Church showed that Principia Mathematica is undecidable if it is ω-consistent, and a year later Rosser showed that Peano Arithmetic is undecidable, and any consistent extension of it.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int IV)
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Validity can preserve certainty in mathematics, but conditionals about contingents are another matter [Edgington]
     Full Idea: If your interest in logic is confined to applications to mathematics or other a priori matters, it is fine for validity to preserve certainty, ..but if you use conditionals when arguing about contingent matters, then great caution will be required.
     From: Dorothy Edgington (Conditionals [2001], 17.2.1)
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
There are many different conditional mental states, and different conditional speech acts [Edgington]
     Full Idea: As well as conditional beliefs, there are conditional desires, hopes, fears etc. As well as conditional statements, there are conditional commands, questions, offers, promises, bets etc.
     From: Dorothy Edgington (Conditionals [2001], 17.3.4)
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Conditionals are truth-functional, but we must take care with misleading ones [Grice, by Edgington]
     Full Idea: Grice argued that the truth-functional account of conditionals can withstand objections, provided that we are careful to distinguish the false from the misleadingly true.
     From: report of H. Paul Grice (Logic and Conversation [1975]) by Dorothy Edgington - Do Conditionals Have Truth Conditions? 2
The odd truth table for material conditionals is explained by conversational conventions [Grice, by Fisher]
     Full Idea: According to Grice, it is the rules that govern conversation beyond the merely logical that account for the counter-intuitiveness of the truth table for the material conditional.
     From: report of H. Paul Grice (Logic and Conversation [1975]) by Jennifer Fisher - On the Philosophy of Logic 8.I
     A reaction: There is a conversational rule which says that replies should normally relevant to context. It would be nice if logical implications were also relevant to context.
Conditionals might remain truth-functional, despite inappropriate conversational remarks [Edgington on Grice]
     Full Idea: Grice defended the truth-functional account of conditionals, noting the gap between what we are justified in believing and what is appropriate to say. .But the problem arises at the level of belief, not at the level of inappropriate conversational remarks
     From: comment on H. Paul Grice (Logic and Conversation [1975]) by Dorothy Edgington - Conditionals 17.1.3
Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? [Edgington]
     Full Idea: Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? Are they non-truth-functional, like 'because' or 'before'? Do the values of A and B, in some cases, leave open the value of 'If A,B'?
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: I would say they are not truth-functional, because the 'if' asserts some further dependency relation that goes beyond the truth or falsity of A and B. Logical ifs, causal ifs, psychological ifs... The material conditional ⊃ is truth-functional.
'If A,B' must entail ¬(A & ¬B); otherwise we could have A true, B false, and If A,B true, invalidating modus ponens [Edgington]
     Full Idea: If it were possible to have A true, B false, and If A,B true, it would be unsafe to infer B from A and If A,B: modus ponens would thus be invalid. Hence 'If A,B' must entail ¬(A & ¬B).
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: This is a firm defence of part of the truth-functional view of conditionals, and seems unassailable. The other parts of the truth table are open to question, though, if A is false, or they are both true.
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
A person can be justified in believing a proposition, though it is unreasonable to actually say it [Grice, by Edgington]
     Full Idea: Grice drew attention to situations in which a person is justified in believing a proposition, which would nevertheless by an unreasonable thing for the person to say, in normal circumstances. I think he is right about disjunction and negated conjunctions.
     From: report of H. Paul Grice (Logic and Conversation [1975]) by Dorothy Edgington - Conditionals (Stanf) 2.4
     A reaction: Edgington considers Grice's ideas of implicature as of permanent value, especially as a clarification of 1950s ordinary language philosophy.