Combining Texts

All the ideas for 'Conditionals', 'A Universe from Nothing' and 'The Nature of Things'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

4. Formal Logic / F. Set Theory ST / 7. Natural Sets
A class is natural when everybody can spot further members of it [Quinton]
     Full Idea: To say that a class is natural is to say that when some of its members are shown to people they pick out others without hesitation and in agreement.
     From: Anthony Quinton (The Nature of Things [1973], 9 'Nat')
     A reaction: He concedes a number of problems with his view, but I admire his attempt to at least begin to distinguish the natural (real!) classes from the ersatz ones. A mention of causal powers would greatly improve his story.
7. Existence / C. Structure of Existence / 2. Reduction
An understanding of the most basic physics should explain all of the subject's mysteries [Krauss]
     Full Idea: Once we understood the fundamental laws that govern forces of nature at its smallest scales, all of these current mysteries would be revealed as natural consequences of these laws.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 08)
     A reaction: This expresses the reductionist view within physics itself. Krauss says the discovery that empty space itself contains energy has led to a revision of this view (because that is not part of the forces and particles studied in basic physics).
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
In 1676 it was discovered that water is teeming with life [Krauss]
     Full Idea: Van Leeuwenhoek first stared at a drop of seemingly empty water with a microscope in 1676 and discovered in was teeming with life.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: I am convinced that this had a huge influence on Leibniz's concept of monads. He immediately became convinced that it was some sort of life all the way down. He would be have been disappointed by the subsequent chemical reduction of life.
7. Existence / E. Categories / 5. Category Anti-Realism
Extreme nominalists say all classification is arbitrary convention [Quinton]
     Full Idea: Pure, extreme nominalism sees all classification as the product of arbitrary convention.
     From: Anthony Quinton (The Nature of Things [1973], 9 'Nat')
     A reaction: I'm not sure what the word 'arbitrary' is doing there. Nominalists are not daft, and if they can classify any way they like, they are not likely to choose an 'arbitrary' system. Pragmatism tells the right story here.
8. Modes of Existence / B. Properties / 5. Natural Properties
The naturalness of a class depends as much on the observers as on the objects [Quinton]
     Full Idea: The naturalness of a class depends as essentially on the nature of the observers who classify as it does on the nature of the objects that they classify. ...It depends on our perceptual apparatus, and on our relatively mutable needs and interests.
     From: Anthony Quinton (The Nature of Things [1973], 9 'Nat')
     A reaction: This seems to translate 'natural' as 'natural for us', which is not much use to scientists, who spend quite a lot of effort combating folk wisdom. Do desirable sports cars constitute a natural class?
Properties imply natural classes which can be picked out by everybody [Quinton]
     Full Idea: To say there are properties is to say there are natural classes, classes introduction to some of whose members enables people to pick out others without hesitation and in agreement.
     From: Anthony Quinton (The Nature of Things [1973], 9 'Nat')
     A reaction: Aristotle would like this approach, but it doesn't find many friends among modern logician/philosophers. We should go on to ask why people agree on these things. Causal powers will then come into it.
8. Modes of Existence / D. Universals / 4. Uninstantiated Universals
Uninstantiated properties must be defined using the instantiated ones [Quinton]
     Full Idea: Properties that have no concrete instances must be defined in terms of those that have.
     From: Anthony Quinton (The Nature of Things [1973], 9 'Nat')
     A reaction: I wonder what the dodo used to smell like?
9. Objects / A. Existence of Objects / 5. Individuation / b. Individuation by properties
An individual is a union of a group of qualities and a position [Quinton, by Campbell,K]
     Full Idea: Quinton proposes that an individual is a union of a group of qualities and a position.
     From: report of Anthony Quinton (The Nature of Things [1973], Pt I) by Keith Campbell - The Metaphysic of Abstract Particulars §5
     A reaction: This seems the obvious defence of a bundle account of objects against the charge that indiscernibles would have to be identical. It introduces, however, 'positions' into the ontology, but maybe that price must be paid. Materialism needs space.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Validity can preserve certainty in mathematics, but conditionals about contingents are another matter [Edgington]
     Full Idea: If your interest in logic is confined to applications to mathematics or other a priori matters, it is fine for validity to preserve certainty, ..but if you use conditionals when arguing about contingent matters, then great caution will be required.
     From: Dorothy Edgington (Conditionals [2001], 17.2.1)
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
There are many different conditional mental states, and different conditional speech acts [Edgington]
     Full Idea: As well as conditional beliefs, there are conditional desires, hopes, fears etc. As well as conditional statements, there are conditional commands, questions, offers, promises, bets etc.
     From: Dorothy Edgington (Conditionals [2001], 17.3.4)
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? [Edgington]
     Full Idea: Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? Are they non-truth-functional, like 'because' or 'before'? Do the values of A and B, in some cases, leave open the value of 'If A,B'?
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: I would say they are not truth-functional, because the 'if' asserts some further dependency relation that goes beyond the truth or falsity of A and B. Logical ifs, causal ifs, psychological ifs... The material conditional ⊃ is truth-functional.
'If A,B' must entail ¬(A & ¬B); otherwise we could have A true, B false, and If A,B true, invalidating modus ponens [Edgington]
     Full Idea: If it were possible to have A true, B false, and If A,B true, it would be unsafe to infer B from A and If A,B: modus ponens would thus be invalid. Hence 'If A,B' must entail ¬(A & ¬B).
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: This is a firm defence of part of the truth-functional view of conditionals, and seems unassailable. The other parts of the truth table are open to question, though, if A is false, or they are both true.
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
Space itself can expand (and separate its contents) at faster than light speeds [Krauss]
     Full Idea: Special Relativity says nothing can travel 'through space' faster than the speed of light. But space itself can do whatever the heck it wants, at least in general relativity. And it can carry distant objects apart from one another at superluminal speeds
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 06)
     A reaction: Another of my misunderstandings corrected. I assumed that the event horizon (limit of observability) was defined by the stuff retreating at (max) light speed. But beyond that it retreats even faster! What about the photons in space?
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
General Relativity: the density of energy and matter determines curvature and gravity [Krauss]
     Full Idea: The left-hand side of the general relativity equations descrbe the curvature of the universe, and the strength of gravitational forces acting on matter and radiation. The right-hand sides reflect the total density of all kinds of energy and matter.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: I had assumed that the equations just described the geometry. In fact the matter determines the nature of the universe in which it exists. Presumably only things with mass get a vote.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Uncertainty says that energy can be very high over very short time periods [Krauss]
     Full Idea: The Heisenberg Uncertainty Principle says that the uncertainty in the measured energy of a system is inversely proportional to the length of time over which you observe it. (This allow near infinite energy over very short times).
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: Apparently this brief energy is 'borrowed', and must be quickly repaid.
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Most of the mass of a proton is the energy in virtual particles (rather than the quarks) [Krauss]
     Full Idea: The quarks provide very little of the total mass of a proton, and the fields created by the virtual particles contribute most of the energy that goes into the proton's rest energy and, hence, its mass.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: He gives an artist's impression of the interior of a proton, which looks like a ship's engine room.
27. Natural Reality / C. Space / 2. Space
Empty space contains a continual flux of brief virtual particles [Krauss]
     Full Idea: Empty space is complicated. It is a boiling brew of virtual particles that pop in and out of existence in a time so short we cannot see them directly.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 10)
     A reaction: Apparently the interior of a proton is also like this. This fact gives a foot in the door for explanations of how the Big Bang got started, from these virtual particles. And yet surely space itself only arrives with the Big Bang?
27. Natural Reality / E. Cosmology / 3. The Beginning
The universe is precisely 13.72 billion years old [Krauss]
     Full Idea: We now know the age of the universe to four significant figures. It is 13.72 billion years old!
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 05)
     A reaction: It amazes me how many people, especially in philosophy, would be reluctant to accept that this is a know fact. I'm not accepting its certainty, but an assertion like this from a leading figure is good enough for me, and it should be for you.
27. Natural Reality / E. Cosmology / 10. Multiverse
It seems likely that cosmic inflation is eternal, and this would make a multiverse inevitable [Krauss]
     Full Idea: A multiverse is inevitable if inflation is eternal, and eternal inflation is by far the most likely possibility in most, if not all, inflationary scenarios.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 08)