Combining Texts

All the ideas for 'Conditionals', 'On the Question of Absolute Undecidability' and 'Chomsky on himself'

unexpand these ideas     |    start again     |     specify just one area for these texts


11 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Validity can preserve certainty in mathematics, but conditionals about contingents are another matter [Edgington]
     Full Idea: If your interest in logic is confined to applications to mathematics or other a priori matters, it is fine for validity to preserve certainty, ..but if you use conditionals when arguing about contingent matters, then great caution will be required.
     From: Dorothy Edgington (Conditionals [2001], 17.2.1)
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
There are many different conditional mental states, and different conditional speech acts [Edgington]
     Full Idea: As well as conditional beliefs, there are conditional desires, hopes, fears etc. As well as conditional statements, there are conditional commands, questions, offers, promises, bets etc.
     From: Dorothy Edgington (Conditionals [2001], 17.3.4)
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? [Edgington]
     Full Idea: Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? Are they non-truth-functional, like 'because' or 'before'? Do the values of A and B, in some cases, leave open the value of 'If A,B'?
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: I would say they are not truth-functional, because the 'if' asserts some further dependency relation that goes beyond the truth or falsity of A and B. Logical ifs, causal ifs, psychological ifs... The material conditional ⊃ is truth-functional.
'If A,B' must entail ¬(A & ¬B); otherwise we could have A true, B false, and If A,B true, invalidating modus ponens [Edgington]
     Full Idea: If it were possible to have A true, B false, and If A,B true, it would be unsafe to infer B from A and If A,B: modus ponens would thus be invalid. Hence 'If A,B' must entail ¬(A & ¬B).
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: This is a firm defence of part of the truth-functional view of conditionals, and seems unassailable. The other parts of the truth table are open to question, though, if A is false, or they are both true.
18. Thought / D. Concepts / 2. Origin of Concepts / c. Nativist concepts
Chomsky now says concepts are basically innate, as well as syntax [Chomsky, by Lowe]
     Full Idea: Chomsky now contends that not only the syntax of natural language but also the concepts expressible in it have an innate basis.
     From: report of Noam Chomsky (Chomsky on himself [1994]) by E.J. Lowe - Introduction to the Philosophy of Mind Ch.7 n25
     A reaction: This seems to follow Fodor, who has been mocked for implying that we have an innate idea of a screwdriver etc. Note that Chomsky says concepts have an innate 'basis'. This fits well with modern (cautious) rationalism, with which I am happy.