Combining Texts

All the ideas for 'Conditionals', 'The Ways of Paradox' and 'Notes on Comments by Fardella'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The set scheme discredited by paradoxes is actually the most natural one [Quine]
     Full Idea: Each proposed revision of set theory is unnatural, because the natural scheme is the unrestricted one that the antinomies discredit.
     From: Willard Quine (The Ways of Paradox [1961], p.16)
     A reaction: You can either takes this free-far-all version of set theory, and gradually restrain it for each specific problem, or start from scratch and build up in safe steps. The latter is (I think) the 'iterated' approach.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's antinomy challenged the idea that any condition can produce a set [Quine]
     Full Idea: In the case of Russell's antinomy, the tacit and trusted pattern of reasoning that is found wanting is this: for any condition you can formulate, there is a class whose members are the things meeting the condition.
     From: Willard Quine (The Ways of Paradox [1961], p.11)
     A reaction: This is why Russell's Paradox is so important for set theory, which in turn makes it important for the foundations of mathematics.
5. Theory of Logic / L. Paradox / 3. Antinomies
Antinomies contradict accepted ways of reasoning, and demand revisions [Quine]
     Full Idea: An 'antinomy' produces a self-contradiction by accepted ways of reasoning. It establishes that some tacit and trusted pattern of reasoning must be made explicit and henceforward be avoided or revised.
     From: Willard Quine (The Ways of Paradox [1961], p.05)
     A reaction: Quine treats antinomies as of much greater importance than mere paradoxes. It is often possible to give simple explanations of paradoxes, but antinomies go to the root of our belief system. This was presumably Kant's intended meaning.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Whenever the pursuer reaches the spot where the pursuer has been, the pursued has moved on [Quine]
     Full Idea: The Achilles argument is that (if the front runner keeps running) each time the pursuer reaches a spot where the pursuer has been, the pursued has moved a bit beyond.
     From: Willard Quine (The Ways of Paradox [1961], p.03)
     A reaction: Quine is always wonderfully lucid, and this is the clearest simple statement of the paradox.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
A barber shaves only those who do not shave themselves. So does he shave himself? [Quine]
     Full Idea: In a certain village there is a barber, who shaves all and only those men in the village who do not shave themselves. So does the barber shave himself? The barber shaves himself if and only if he does not shave himself.
     From: Willard Quine (The Ways of Paradox [1961], p.02)
     A reaction: [Russell himself quoted this version of his paradox, from an unnamed source] Quine treats his as trivial because it only concerns barbers, but the full Russell paradox is a major 'antinomy', because it concerns sets.
Membership conditions which involve membership and non-membership are paradoxical [Quine]
     Full Idea: With Russell's antinomy, ...each tie the trouble comes of taking a membership condition that itself talks in turn of membership and non-membership.
     From: Willard Quine (The Ways of Paradox [1961], p.13)
     A reaction: Hence various stipulations to rule out vicious circles or referring to sets of the 'wrong type' are invoked to cure the problem. The big question is how strong to make the restrictions.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If we write it as '"this sentence is false" is false', there is no paradox [Quine]
     Full Idea: If we supplant the sentence 'this sentence is false' with one saying what it refers to, we get '"this sentence is false" is false'. But then the whole outside sentence attributes falsity no longer to itself but to something else, so there is no paradox.
     From: Willard Quine (The Ways of Paradox [1961], p.07)
     A reaction: Quine is pointing us towards type theory and meta-languages to solve the problem. We now have the Revenge Liar, and the problem has not been fully settled.
9. Objects / B. Unity of Objects / 1. Unifying an Object / c. Unity as conceptual
To exist and be understood, a multitude must first be reduced to a unity [Leibniz]
     Full Idea: A plurality of things can neither be understood nor can exist unless one first understands the thing that is one, that to which the multitude necessarily reduces.
     From: Gottfried Leibniz (Notes on Comments by Fardella [1690], Prop 3)
     A reaction: Notice that it is our need to understand which imposes the unity on the multitude. It is not just some random fiction, or a meaningless mechanical act of thought.
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
Substances are everywhere in matter, like points in a line [Leibniz]
     Full Idea: There are substances everywhere in matter, just as points are everywhere in a line.
     From: Gottfried Leibniz (Notes on Comments by Fardella [1690], Clarif)
     A reaction: Since Leibniz is unlikely to believe in the reality of the points, we must wonder whether he was really committed to this infinity of substances. The more traditional notion of substance is always called 'substantial form' by Leibniz.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Validity can preserve certainty in mathematics, but conditionals about contingents are another matter [Edgington]
     Full Idea: If your interest in logic is confined to applications to mathematics or other a priori matters, it is fine for validity to preserve certainty, ..but if you use conditionals when arguing about contingent matters, then great caution will be required.
     From: Dorothy Edgington (Conditionals [2001], 17.2.1)
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
There are many different conditional mental states, and different conditional speech acts [Edgington]
     Full Idea: As well as conditional beliefs, there are conditional desires, hopes, fears etc. As well as conditional statements, there are conditional commands, questions, offers, promises, bets etc.
     From: Dorothy Edgington (Conditionals [2001], 17.3.4)
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? [Edgington]
     Full Idea: Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? Are they non-truth-functional, like 'because' or 'before'? Do the values of A and B, in some cases, leave open the value of 'If A,B'?
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: I would say they are not truth-functional, because the 'if' asserts some further dependency relation that goes beyond the truth or falsity of A and B. Logical ifs, causal ifs, psychological ifs... The material conditional ⊃ is truth-functional.
'If A,B' must entail ¬(A & ¬B); otherwise we could have A true, B false, and If A,B true, invalidating modus ponens [Edgington]
     Full Idea: If it were possible to have A true, B false, and If A,B true, it would be unsafe to infer B from A and If A,B: modus ponens would thus be invalid. Hence 'If A,B' must entail ¬(A & ¬B).
     From: Dorothy Edgington (Conditionals [2001], 17.1)
     A reaction: This is a firm defence of part of the truth-functional view of conditionals, and seems unassailable. The other parts of the truth table are open to question, though, if A is false, or they are both true.