Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Constructibility and Mathematical Existence' and 'Aboutness'

unexpand these ideas     |    start again     |     specify just one area for these texts


36 ideas

3. Truth / A. Truth Problems / 5. Truth Bearers
A statement S is 'partly true' if it has some wholly true parts [Yablo]
     Full Idea: A statement S is 'partly true' insofar as it has wholly true parts: wholly true implications whose subject matter is included in that of S.
     From: Stephen Yablo (Aboutness [2014], 01.6)
     A reaction: He suggests that if we have rival theories, we agree that it is one or the other. And 'we may have pork for dinner, or human flesh' is partly true.
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
An 'enthymeme' is an argument with an indispensable unstated assumption [Yablo]
     Full Idea: An 'enthymeme' is a deductive argument with an unstated assumption that must be true for the premises to lead to the conclusion.
     From: Stephen Yablo (Aboutness [2014], 11.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
We could talk of open sentences, instead of sets [Chihara, by Shapiro]
     Full Idea: Chihara's programme is to replace talk of sets with talk of open sentences. Instead of speaking of the set of all cats, we talk about the open sentence 'x is a cat'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: As Shapiro points out, this is following up Russell's view that sets should be replaced with talk of properties. Chihara is expressing it more linguistically. I'm in favour of any attempt to get rid of sets.
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
y is only a proper part of x if there is a z which 'makes up the difference' between them [Yablo]
     Full Idea: The principle of Supplementation says that y is properly part of x, only if a z exists that 'makes up the difference' between them. [note: that is, z is disjoint from y and sums with y to form x]
     From: Stephen Yablo (Aboutness [2014], 03.2)
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
'Pegasus doesn't exist' is false without Pegasus, yet the absence of Pegasus is its truthmaker [Yablo]
     Full Idea: 'Pegasus does not exist' has a paradoxical, self-undermining flavour. On the one hand, the empty name makes it untrue. But now, why is the name empty? Because Pegasus does not exist. 'Pegasus does not exist' is untrue because Pegasus does not exist.
     From: Stephen Yablo (Aboutness [2014], 05.7 n20)
     A reaction: Beautiful! This is Yablo's reward for continuing to ask 'why?' after everyone else has stopped in bewilderment at the tricky phenomenon.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
A nominalist can assert statements about mathematical objects, as being partly true [Yablo]
     Full Idea: If I am a nominalist non-Platonist, I think it is false that 'there are primes over 10', but I want to be able to say it like everyone else. I argue that this because the statement has a part that I do believe, a part that remains interestingly true.
     From: Stephen Yablo (Aboutness [2014], 05.8)
     A reaction: This is obviously a key motivation for Yablo's book, as it reinforces his fictional view of abstract objects, but aims to capture the phenomena, by investigating what such sentences are 'about'. Admirable.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Chihara's system is a variant of type theory, from which he can translate sentences [Chihara, by Shapiro]
     Full Idea: Chihara's system is a version of type theory. Translate thus: replace variables of sets of type n with level n variables over open sentences, replace membership/predication with satisfaction, and high quantifiers with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
We can replace type theory with open sentences and a constructibility quantifier [Chihara, by Shapiro]
     Full Idea: Chihara's system is similar to simple type theory; he replaces each type with variables over open sentences, replaces membership (or predication) with satisfaction, and replaces quantifiers over level 1+ variables with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: This is interesting for showing that type theory may not be dead. The revival of supposedly dead theories is the bread-and-butter of modern philosophy.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Introduce a constructibility quantifiers (Cx)Φ - 'it is possible to construct an x such that Φ' [Chihara, by Shapiro]
     Full Idea: Chihara has proposal a modal primitive, a 'constructability quantifier'. Syntactically it behaves like an ordinary quantifier: Φ is a formula, and x a variable. Then (Cx)Φ is a formula, read as 'it is possible to construct an x such that Φ'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: We only think natural numbers are infinite because we see no barrier to continuing to count, i.e. to construct new numbers. We accept reals when we know how to construct them. Etc. Sounds promising to me (though not to Shapiro).
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Parthood lacks the restriction of kind which most relations have [Yablo]
     Full Idea: Most relations obtain only between certain kinds of thing. To learn that x is a part of y, however, tells you nothing about x and y taken individually.
     From: Stephen Yablo (Aboutness [2014], 03.2)
     A reaction: Too sweeping. To be a part of crowd you have to be a person. To be part of the sea you have to be wet. It might depend on whether composition is unrestricted.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / b. Gettier problem
Gettier says you don't know if you are confused about how it is true [Yablo]
     Full Idea: We know from Gettier that if you are right to regard Q as true, but you are sufficiently confused about HOW it is true - about how things stand with respect to its subject matter - then you don't know that Q.
     From: Stephen Yablo (Aboutness [2014], 07.4)
     A reaction: I'm inclined to approach Gettier by focusing on the propositions being expressed, where his cases tend to focus on the literal wording of the sentences. What did the utterer mean by the sentences - not what did they appear to say.
14. Science / B. Scientific Theories / 2. Aim of Science
A theory need not be true to be good; it should just be true about its physical aspects [Yablo]
     Full Idea: A physical theory need not be true to be good, Field has argued, and I agree. All we ask of it truth-wise is that its physical implications should be true, or, in my version, that it should be true about the physical.
     From: Stephen Yablo (Aboutness [2014], 12.5)
     A reaction: Yablo is, of course, writing a book here about the concept of 'about'. This seems persuasive. The internal terminology of the theory isn't committed to anything - it is only at its physical periphery (Quine) that the ontology matters.
14. Science / C. Induction / 5. Paradoxes of Induction / b. Raven paradox
If sentences point to different evidence, they must have different subject-matter [Yablo]
     Full Idea: 'All crows are black' cannot say quite the same as 'All non-black things are non-crows', for the two are confirmed by different evidence. Subject matter looks to be the distinguishing feature. One is about crows, the other not.
     From: Stephen Yablo (Aboutness [2014], Intro)
     A reaction: You might reply that they are confirmed by the same evidence (but only in its unobtainable totality). The point, I think, is that the sentences invite you to start your search in different places.
Most people say nonblack nonravens do confirm 'all ravens are black', but only a tiny bit [Yablo]
     Full Idea: The standard response to the raven paradox is to say that a nonblack nonraven does confirm that all ravens are black. But it confirms it just the teeniest little bit - not as much as a black raven does.
     From: Stephen Yablo (Aboutness [2014], 06.5)
     A reaction: It depends on the proportion between the relevant items. How do you confirm 'all the large animals in this zoo are mammals'? Check for size every animal which is obviously not a mammal?
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
Sentence-meaning is the truth-conditions - plus factors responsible for them [Yablo]
     Full Idea: A sentence's meaning is to do with its truth-value in various possible scenarios, AND the factors responsible for that truth-value.
     From: Stephen Yablo (Aboutness [2014], Intro)
     A reaction: The thesis of his book, which I welcome. I'm increasingly struck by the way in which much modern philosophy settles for a theory being complete, when actually further explanation is possible. Exhibit A is functional explanations. Why that function?
19. Language / C. Assigning Meanings / 4. Compositionality
The content of an assertion can be quite different from compositional content [Yablo]
     Full Idea: Assertive content - what a sentence is heard as saying - can be at quite a distance from compositional content.
     From: Stephen Yablo (Aboutness [2014], Intro)
     A reaction: This is the obvious reason why semantics cannot be entirely compositional, since there is nearly always a contextual component which then has to be added. In the case of irony, the compositional content is entirely reversed.
19. Language / C. Assigning Meanings / 6. Truth-Conditions Semantics
Truth-conditions as subject-matter has problems of relevance, short cut, and reversal [Yablo]
     Full Idea: If the subject-matter of S is how it is true, we get three unfortunate results: S has truth-value in worlds where its subject-matter draws a blank; learning what S is about tells you its truth-value; negating S changes what it's about.
     From: Stephen Yablo (Aboutness [2014], 02.8)
     A reaction: Together these make fairly devastating objections to the truth-conditions (in possible worlds) theory of meaning. The first-objection concerns when S is false
19. Language / F. Communication / 3. Denial
Not-A is too strong to just erase an improper assertion, because it actually reverses A [Yablo]
     Full Idea: The idea that negation is, or can be, a cancellation device raises an interesting question. What does one do to wipe the slate clean after an improper assertion? Not-A is too strong; it reverses our stand on A rather than nullifying it.
     From: Stephen Yablo (Aboutness [2014], 09.8)
     A reaction: [He is discussing a remark of Strawson 1952] It seems that 'not' has two meanings or uses: a weak use of 'nullifying' an assertion, and a strong use of 'reversing' an assertion. One could do both: 'that's not right; in fact, it's just the opposite'.