Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Frege's Concept of Numbers as Objects' and 'Maths as a Science of Patterns'

unexpand these ideas     |    start again     |     specify just one area for these texts


62 ideas

1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
     Full Idea: We can learn from the work of philosophers of other periods only if we are prepared to run the risk of radical and almost inevitable misrepresentation of his thought.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Pref)
     A reaction: This sounds about right, and a motto for my own approach to Aristotle and Leibniz, but I see the effort as more collaborative than this suggests. Professional specialists in older philosophers are a vital part of the team. Read them!
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
     Full Idea: The most productive way in which to attempt an understanding of any philosophical idea is to work on its defence.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: Very nice. The key point is that this brings greater understanding than working on attacking an idea, which presumably has the dangers of caricature, straw men etc. It is the Socratic insight that dialectic is the route to wisdom.
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
     Full Idea: Frege gave up on the attempt to introduce natural numbers by contextual definition, but the project has been revived by neo-logicists.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction II
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axioms are often affirmed simply because they produce results which have been accepted [Resnik]
     Full Idea: Many axioms have been proposed, not on the grounds that they can be directly known, but rather because they produce a desired body of previously recognised results.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.5.1)
     A reaction: This is the perennial problem with axioms - whether we start from them, or whether we deduce them after the event. There is nothing wrong with that, just as we might infer the existence of quarks because of their results.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
     Full Idea: For Wright, an expression refers to an object if it fulfils the 'syntactic role' of a singular term, and if we have fixed the truth-conditions of sentences containing it in such a way that some of them come out true.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.15
     A reaction: Much waffle is written about reference, and it is nice to hear of someone actually trying to state the necessary and sufficient conditions for reference to be successful. So is it possible for 'the round square' to ever refer? '...is impossible to draw'
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical realism says that maths exists, is largely true, and is independent of proofs [Resnik]
     Full Idea: Mathematical realism is the doctrine that mathematical objects exist, that much contemporary mathematics is true, and that the existence and truth in question is independent of our constructions, beliefs and proofs.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.12.9)
     A reaction: As thus defined, I would call myself a mathematical realist, but everyone must hesitate a little at the word 'exist' and ask, how does it exist? What is it 'made of'? To say that it exists in the way that patterns exist strikes me as very helpful.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
     Full Idea: In the Fregean view number theory is a science, aimed at those truths furnished by the essential properties of zero and its successors. The two broad question are then the nature of the objects, and the epistemology of those facts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [compressed] I pounce on the word 'essence' here (my thing). My first question is about the extent to which the natural numbers all have one generic essence, and the extent to which they are individuals (bless their little cotton socks).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
     Full Idea: Someone could be clear about number identities, and distinguish numbers from other things, without conceiving them as ordered in a progression at all. The point of them would be to make comparisons between sizes of groups.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: Hm. Could you grasp size if you couldn't grasp which of two groups was the bigger? What's the point of noting that I have ten pounds and you only have five, if you don't realise that I have more than you? You could have called them Caesar and Brutus.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
     Full Idea: The invitation to number the instances of some non-sortal concept is intelligible only if it is relativised to a sortal.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: I take this to be an essentially Fregean idea, as when we count the boots when we have decided whether they fall under the concept 'boot' or the concept 'pair'. I also take this to be the traditional question 'what units are you using'?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
     Full Idea: Wright is claiming that HP is a special sort of truth in some way: it is supposed to be the fundamental truth about cardinality; ...in particular, HP is supposed to be more fundamental, in some sense than the Dedekind-Peano axioms.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Heck notes that although PA can be proved from HP, HP can be proven from PA plus definitions, so direction of proof won't show fundamentality. He adds that Wright thinks HP is 'more illuminating'.
There are five Peano axioms, which can be expressed informally [Wright,C]
     Full Idea: Informally, Peano's axioms are: 0 is a number, numbers have a successor, different numbers have different successors, 0 isn't a successor, properties of 0 which carry over to successors are properties of all numbers.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: Each statement of the famous axioms is slightly different from the others, and I have reworded Wright to fit him in. Since the last one (the 'induction axiom') is about properties, it invites formalization in second-order logic.
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
     Full Idea: The intuitive proposal is the essential number theoretic truths are precisely the logical consequences of the Peano axioms, ...but the notion of consequence is a semantic one...and it is not obvious that we possess a semantic notion of the requisite kind.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: (Not sure I understand this, but it is his starting point for rejecting PA as the essence of arithmetic).
What facts underpin the truths of the Peano axioms? [Wright,C]
     Full Idea: We incline to think of the Peano axioms as truths of some sort; so there has to be a philosophical question how we ought to conceive of the nature of the facts which make those statements true.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [He also asks about how we know the truths]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
     Full Idea: We teach our children to count, sometimes with no attempt to explain what the sounds mean. Doubtless it is this habit which makes it so natural to think of the number series as fundamental. Frege's insight is that sameness of number is fundamental.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: 'When do children understand number?' rather than when they can recite numerals. I can't make sense of someone being supposed to understand number without a grasp of which numbers are bigger or smaller. To make 13='15' do I add or subtract?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
     Full Idea: Wright says the Fregean arithmetic can be broken down into two steps: first, Hume's Law may be derived from Law V; and then, arithmetic may be derived from Hume's Law without any help from Law V.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction I.4
     A reaction: This sounds odd if Law V is false, but presumably Hume's Law ends up as free-standing. It seems doubtful whether the resulting theory would count as logic.
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
     Full Idea: Wright proposed removing Frege's basic law V (which led to paradox), replacing it with Frege's 'number principle' (identity of numbers is one-to-one correspondence). The new system is formally consistent, and the Peano axioms can be derived from it.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.7
     A reaction: The 'number principle' is also called 'Hume's principle'. This idea of Wright's resurrected the project of logicism. The jury is ought again... Frege himself questioned whether the number principle was a part of logic, which would be bad for 'logicism'.
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
     Full Idea: Wright intends the claim that Hume's Principle (HP) embodies an explanation of the concept of number to imply that it is analytic of the concept of cardinal number - so it is an analytic or conceptual truth, much as a definition would be.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Boolos is quoted as disagreeing. Wright is claiming a fundamental truth. Boolos says something can fix the character of something (as yellow fixes bananas), but that doesn't make it 'fundamental'. I want to defend 'fundamental'.
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
     Full Idea: What is fundamental to possession of any notion of natural number at all is not the knowledge that the numbers may be arrayed in a progression but the knowledge that they are identified and distinguished by reference to 1-1 correlation among concepts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: My question is 'what is the essence of number?', and my inclination to disagree with Wright on this point suggests that the essence of number is indeed caught in the Dedekind-Peano axioms. But what of infinite numbers?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
     Full Idea: Identifying numbers with extensions will not solve the Caesar problem for numbers unless we have already solved the Caesar problem for extensions.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematical constants and quantifiers only exist as locations within structures or patterns [Resnik]
     Full Idea: In maths the primary subject-matter is not mathematical objects but structures in which they are arranged; our constants and quantifiers denote atoms, structureless points, or positions in structures; they have no identity outside a structure or pattern.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.1)
     A reaction: This seems to me a very promising idea for the understanding of mathematics. All mathematicians acknowledge that the recognition of patterns is basic to the subject. Even animals recognise patterns. It is natural to invent a language of patterns.
Sets are positions in patterns [Resnik]
     Full Idea: On my view, sets are positions in certain patterns.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.5)
     A reaction: I have always found the ontology of a 'set' puzzling, because they seem to depend on prior reasons why something is a member of a given set, which cannot always be random. It is hard to explain sets without mentioning properties.
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
There are too many mathematical objects for them all to be mental or physical [Resnik]
     Full Idea: If we take mathematics at its word, there are too many mathematical objects for it to be plausible that they are all mental or physical objects.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: No one, of course, has ever claimed that they are, but this is a good starting point for assessing the ontology of mathematics. We are going to need 'rules', which can deduce the multitudinous mathematical objects from a small ontology.
Maths is pattern recognition and representation, and its truth and proofs are based on these [Resnik]
     Full Idea: I argue that mathematical knowledge has its roots in pattern recognition and representation, and that manipulating representations of patterns provides the connection between the mathematical proof and mathematical truth.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: The suggestion that patterns are at the basis of the ontology of mathematics is the most illuminating thought I have encountered in the area. It immediately opens up the possibility of maths being an entirely empirical subject.
Congruence is the strongest relationship of patterns, equivalence comes next, and mutual occurrence is the weakest [Resnik]
     Full Idea: Of the equivalence relationships which occur between patterns, congruence is the strongest, equivalence the next, and mutual occurrence the weakest. None of these is identity, which would require the same position.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.3)
     A reaction: This gives some indication of how an account of mathematics as a science of patterns might be built up. Presumably the recognition of these 'degrees of strength' cannot be straightforward observation, but will need an a priori component?
Structuralism must explain why a triangle is a whole, and not a random set of points [Resnik]
     Full Idea: An objection is that structuralism fails to explain why certain mathematical patterns are unified wholes while others are not; for instance, some think that an ontological account of mathematics must explain why a triangle is not a 'random' set of points.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.4)
     A reaction: This is an indication that we are not just saying that we recognise patterns in nature, but that we also 'see' various underlying characteristics of the patterns. The obvious suggestion is that we see meta-patterns.
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
     Full Idea: Number-theoretic platonism is just the thesis that natural number is a sortal concept.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: See Crispin Wright on sortals to expound this. An odd way to express platonism, but he is presenting the Fregean version of it.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
     Full Idea: We may not be able to settle whether some general form of empiricism is correct independently of natural numbers. It might be precisely our grasp of the abstract sortal, natural number, which shows the hypothesis of empiricism to be wrong.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: A nice turning of the tables. In the end only coherence decides these things. You may accept numbers and reject empiricism, and then find you have opened the floodgates for abstracta. Excessive floodgates, or blockages of healthy streams?
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
     Full Idea: Treating numbers adjectivally is, in effect, treating the numbers as quantifiers. Frege observes that we can always parse out any apparently adjectival use of a number word in terms of substantival use.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: The immediate response to this is that any substantival use can equally be expressed adjectivally. If you say 'the number of moons of Jupiter is four', I can reply 'oh, you mean Jupiter has four moons'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
     Full Idea: The Peano Axioms are logical consequences of a statement constituting the core of an explanation of the notion of cardinal number. The infinity of cardinal numbers emerges as a consequence of the way cardinal number is explained.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xix)
     A reaction: This, along with Idea 13896, nicely summarises the neo-logicist project. I tend to favour a strategy which starts from ordering, rather than identities (1-1), but an attraction is that this approach is closer to counting objects in its basics.
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
     Full Idea: We shall endeavour to see whether it is possible to follow through the strategy adumbrated in 'Grundlagen' for establishing the Peano Axioms without at any stage invoking classes.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: The key idea of neo-logicism. If you can avoid classes entirely, then set theory paradoxes become irrelevant, and classes aren't logic. Philosophers now try to derive the Peano Axioms from all sorts of things. Wright admits infinity is a problem.
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
     Full Idea: Crispin Wright has reactivated Frege's logistic program, which for decades just about everybody assumed was a lost cause.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by José A. Benardete - Logic and Ontology 3
     A reaction: [This opens Bernadete's section called "Back to Strong Logicism?"]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
     Full Idea: Most would cite Russell's paradox, the non-logical character of the axioms which Russell and Whitehead's reconstruction of Frege's enterprise was constrained to employ, and the incompleteness theorems of Gödel, as decisive for logicism's failure.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
     Full Idea: The general view is that Russell's Paradox put paid to Frege's logicist attempt, and Russell's own attempt is vitiated by the non-logical character of his axioms (esp. Infinity), and by the incompleteness theorems of Gödel. But these are bad reasons.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: Wright's work is the famous modern attempt to reestablish logicism, in the face of these objections.
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
     Full Idea: I have the gravest doubts whether any coherent account could be given of any multiplicity of senses of 'exist'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.x)
     A reaction: I thoroughly agree with this thought. Do water and wind exist in different senses of 'exist'?
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
     Full Idea: When a class of terms functions as singular terms, and the sentences are true, then those terms genuinely refer. Being singular terms, their reference is to objects. There is no further question whether they really refer, and there are such objects.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: This seems to be a key sentence, because this whole view is standardly called 'platonic', but it certainly isn't platonism as we know it, Jim. Ontology has become an entirely linguistic matter, but do we then have 'sakes' and 'whereaboutses'?
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
     Full Idea: Wright says we should accord to contextually defined abstract terms a genuine full-blown reference to objects.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.18
     A reaction: This is the punch line of Wright's neo-logicist programme. See Idea 9868 for his view of reference. Dummett regards this strong view of contextual definition as 'exorbitant'. Wright's view strikes me as blatantly false.
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
     Full Idea: The claim that no concept counts as sortal if an instance of it can survive its loss, runs foul of so-called phase sortals like 'embryo' and 'chrysalis'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: The point being that those items only fall under that sortal for one phase of their career, and of their identity. I've always thought such claims absurd, and this gives a good reason for my view.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
A concept is only a sortal if it gives genuine identity [Wright,C]
     Full Idea: Before we can conclude that φ expresses a sortal concept, we need to ensure that 'is the same φ as' generates statements of genuine identity rather than of some other equivalence relation.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
     Full Idea: A concept is 'sortal' if it exemplifies a kind of object. ..In English predication of a sortal concept needs an indefinite article ('an' elm). ..What really constitutes the distinction is that it involves grasping identity for things which fall under it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: This is a key notion, which underlies the claims of 'sortal essentialism' (see David Wiggins).
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
     Full Idea: 'Tree' is not a sortal concept under which directions fall since we cannot adequately explain the truth-conditions of any identity statement involving a pair of tree-denoting singular terms by appealing to facts to do with parallelism between lines.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
     A reaction: The idea seems to be that these two fall under 'hedgehog', because that is a respect in which they are identical. I like to notion of explanation as a part of this.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
     Full Idea: The fact that it seems possible to establish a sortal notion of direction by reference to lines and parallelism, discloses tacit commitments to directions in statements about parallelism...There is incoherence in the idea that a line might lack direction.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xviii)
     A reaction: This seems like a slippery slope into a very extravagant platonism about concepts. Are concepts like direction as much a part of the natural world as rivers are? What other undiscovered concepts await us?
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
     Full Idea: A mild version of the verification principle would say that it makes sense to think of someone as understanding an expression only if he is able, by his use of the expression, to give the best possible evidence that he understands it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: That doesn't seem to tell us what understanding actually consists of, and may just be the truism that to demonstrate anything whatsoever will necessarily involve some evidence.
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
     Full Idea: If the appearance of reference can be misleading, why cannot an apparent lack of reference be misleading?
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.xi)
     A reaction: A nice simple thought. Analytic philosophy has concerned itself a lot with sentences that seem to refer, but the reference can be analysed away. For me, this takes the question of reference out of the linguistic sphere, which wasn't Wright's plan.
19. Language / C. Assigning Meanings / 3. Predicates
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
     Full Idea: The heart of the problem is Frege's assumption that predicates have Bedeutungen at all; and no reason is at present evident why someone who espouses Frege's notion of object is contrained to make that assumption.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iv)
     A reaction: This seems like a penetrating objection to Frege's view of reference, and presumably supports the Kripke approach.