Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'The Particle Zoo' and 'On Human Nature'

unexpand these ideas     |    start again     |     specify just one area for these texts


50 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
7. Existence / C. Structure of Existence / 3. Levels of Reality
If observation goes up a level, we expect the laws of the lower level to remain in force [Wilson,EO]
     Full Idea: When the observer shifts his attention from one level of organisation to the next, as from physics to chemistry, he expects to find obedience to all the laws of the levels below.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.1)
     A reaction: This seems to state a necessary condition of reduction, but not a sufficient one. Wilson points out that new phenomena emerge at higher levels. This principle is similar to Hume's argument against miracles. You don't easily overthrow basic laws.
8. Modes of Existence / D. Universals / 5. Universals as Concepts
A child first sees objects as distinct, and later as members of groups [Wilson,EO]
     Full Idea: From a single-minded effort to move objects a child's activity grows into a detached reflection on the movements themselves. The objects are first perceived as distinct entities, and then as members of groups to be classified.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.3)
     A reaction: This does not, of course, prove anything about the philosophical problems of universals, but it does seem to pinpoint the stage in human development when 'universals' are perceived. The basis seems to be groups or sets, but how do we spot those?
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
Beliefs are really enabling mechanisms for survival [Wilson,EO]
     Full Idea: Beliefs are really enabling mechanisms for survival.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.1)
     A reaction: How does he know this proposition which he asserts so confidently? Obvious counterexamples seem to be utterly trivial beliefs, and self-destructive beliefs. What is the evolutionary value of low self-esteem? Still, you see his point.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / d. Ethical theory
Philosophers study the consequences of ethics instead of its origins [Wilson,EO]
     Full Idea: Philosophers examine the precepts of ethical systems with reference to their consequences and not their origins.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.1)
     A reaction: He is interested in biological origins, but it strikes me that every moral theory has some account of the origins of morality, be it pure reason, or the love of pleasure, or human nature, or eternal ideas, or the will of God, or selfish desires.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
The rules of human decision-making converge and overlap in a 'human nature' [Wilson,EO]
     Full Idea: The rules followed in human decision-making are tight enough to produce a broad overlap in the decisions taken by all individuals, and hence a convergence powerful enough to be labelled 'human nature'.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.3)
     A reaction: This is a nice empirical criterion for asserting the existence of human nature, and it seems right to examine decisions, rather than more thoughtless or conformist behaviour. Existentialists dream of new possibilities, but the old ways always seem best…
22. Metaethics / B. Value / 2. Values / f. Altruism
We undermine altruism by rewarding it, but we reward it to encourage it [Wilson,EO]
     Full Idea: By sanctifying altruism in order to reward it we make it less true, but by that means we promote its recurrence in others.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.7)
     A reaction: So is my preference for not rewarding (or even noticing) altruism an anti-social tendency. The very conspicuous charity of sponsorship seems somehow inferior to the truly anonymous gift. Or super-altruism is very public, to encourage it in others?
Pure hard-core altruism based on kin selection is the enemy of civilisation [Wilson,EO]
     Full Idea: Pure hard-core altruism based on kin selection is the enemy of civilisation.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.7)
     A reaction: By 'hard-core' he means suicidally self-sacrificing, rather than extensive. This seems a good thesis. It strikes me that the development of civil society is often impeded by family loyalty, such as in the case of the Mafia.
23. Ethics / B. Contract Ethics / 1. Contractarianism
The actor is most convincing who believes that his performance is real [Wilson,EO]
     Full Idea: The actor is most convincing who believes that his performance is real.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.7)
     A reaction: This is a key element of social contract theory. It shows why natural selection of truly altruistic traits might be beneficial to individuals, provided they are surrounded by possible recipricators. We trust those who are genuine and sincere.
26. Natural Theory / A. Speculations on Nature / 2. Natural Purpose / c. Purpose denied
The only human purpose is that created by our genetic history [Wilson,EO]
     Full Idea: No species, ours included, possesses a purpose beyond the imperatives created by its genetic history.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.1)
     A reaction: This invites the question of what that purpose is perceived to be. Some people feel an imperative to play the piano all day, so presumably genetic history has created that feeling. Presumably we can also choose a purpose, even extinction.
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Relativity and Quantum theory give very different accounts of forces [Hesketh]
     Full Idea: General Relativity and quantum mechanics are the two great theories in physics today but they give two very different ideas for how forces work.
     From: Gavin Hesketh (The Particle Zoo [2016], 01)
     A reaction: Relativity says it is space curvature, and quantum theory says it is particle exchange? But is there a Relativity account of the strong nuclear force?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / a. Energy
Thermodynamics introduced work and entropy, to understand steam engine efficiency [Hesketh]
     Full Idea: The Laws of Thermodynamics introduced the concepts of entropy and work; put simply, how much useful energy you can really get out of a steam engine.
     From: Gavin Hesketh (The Particle Zoo [2016], 03)
     A reaction: The point of science by this stage was to introduce measurable and quantifiable concepts
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Spinning electric charge produces magnetism, so all fermions are magnets [Hesketh]
     Full Idea: The muon, like all fermions, spins - and because a spinning electric charge generates a magnetic field all fermions act like tiny bar magnets.
     From: Gavin Hesketh (The Particle Zoo [2016], 11)
Photons are B and W° bosons, linked by the Higgs mechanism [Hesketh]
     Full Idea: The photon is actually a mix of two deeper things, the B and the W°, tied together by the Higgs mechanism.
     From: Gavin Hesketh (The Particle Zoo [2016], 06)
     A reaction: The B (for 'Boson') transmits a force associated with the 'winding symmetry'. (I record this without properly understanding it.)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons may have smaller components, bound by a new force [Hesketh]
     Full Idea: Quarks, leptons or bosons may actually be made up of something even smaller, bound together by a conjectural new force.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: Electrons are a type of lepton. Compare Idea 21180, from the same book. If electrons are not fundamental, what matters is not some 'stuff' they are made of, but a different force that would bind the ingredients.
Electrons are fundamental and are not made of anything; they are properties without size [Hesketh]
     Full Idea: As far as we can tell, electrons (and quarks) are fundamental. They are not small lumps of material, because we could always ask what the material is. The electron just ...is. They are collections of properties, with no apparent size.
     From: Gavin Hesketh (The Particle Zoo [2016], 01)
     A reaction: This idea from physics HAS to be of interest to philosophers! The bundle theory is discredited for normal objects and for minds, and so is the substrate idea for supporting properties. But rigorous physics accepts a bundle theory.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum mechanics is our only theory, and is very precise, and repeatedly confirmed [Hesketh]
     Full Idea: Quantum mechanics is the only working description of the universe that we have. It is amazingly precise, and so far every experimental test has verified its predictions.
     From: Gavin Hesketh (The Particle Zoo [2016], 02)
     A reaction: I take it from this that quantum mechanics is simply TRUE. Get over it! It will never turn out to be wrong, but may be subsumed within some more fine-grained or extensive theory.
Physics was rewritten to explain stable electron orbits [Hesketh]
     Full Idea: Explaining the stable electron orbits would require a complete rewriting of the physics of subatomic particles.
     From: Gavin Hesketh (The Particle Zoo [2016], 03)
     A reaction: This really looks like a simple and major landmark moment. You can ignore a single anomaly, but not a central feature of your entire theory.
Virtual particles can't be measured, and can ignore the laws of physics [Hesketh]
     Full Idea: We can never measure these virtual (transitory) particles directly, and it turns out that they don't even have to obey the laws of physics.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: These seems to be the real significance of the Uncertainty Principle. Such particles 'borrow' huge amounts of energy for very short times.
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
Colour charge is positive or negative, and also has red, green or blue direction [Hesketh]
     Full Idea: Colour charge is 'three-dimensional'. As well as the charge having a positive or negative sign, it can also have a direction, and for convenience these three different directions (pointing like a weather vane) are labelled 'red', 'green' and 'blue'.
     From: Gavin Hesketh (The Particle Zoo [2016], 04)
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The Standard Model omits gravity, because there are no particles involved [Hesketh]
     Full Idea: Gravity is not included in the Standard Model because we simply cannot study it using particles.
     From: Gavin Hesketh (The Particle Zoo [2016], 09)
     A reaction: I'm guessing that Einstein describes how gravity behaves, but not what it is.
In Supersymmetry the Standard Model simplifies at high energies [Hesketh]
     Full Idea: Supersymmetry suggest that the Standard Model becomes much simpler at high energies.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
Standard Model forces are one- two- and three-dimensional [Hesketh]
     Full Idea: The forces in the Standard Model are built on gauge symmetries, with a one-dimensional charge (like electromagnetism), a two-dimensional charge (the weak force), and a three dimensional charge (the strong force).
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: See also Idea 21185.
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Quarks and leptons have a weak charge, for the weak force [Hesketh]
     Full Idea: For the weak force there must be a corresponding 'weak charge', and all the fermions, all the quarks and leptons carry it.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: So electrons carry a weak charge, as well as an electromagnetic charge. Like owning several passports.
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Quarks rush wildly around in protons, restrained by the gluons [Hesketh]
     Full Idea: Inside a proton the quarks are rushing around like caged animals, free to move until they push against the bars to try to escape, when the gluons pull them back in.
     From: Gavin Hesketh (The Particle Zoo [2016], 04)
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos only interact with the weak force, but decays produce them in huge numbers [Hesketh]
     Full Idea: Neutrinos only interact with the weak force, which means they barely interact at all, but because the weak force is crucial in the decays of so many other particles, neutrinos are still produced in huge numbers.
     From: Gavin Hesketh (The Particle Zoo [2016], 08)
     A reaction: They only interact with the W and Z bosons.
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
To combine the forces, they must all be the same strength at some point [Hesketh]
     Full Idea: If all the forces are to combine, at some point they must all be the same strength, and Supersymmetry (SuSy) makes this happen.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: This sounds like an impressive reason for favouring supersymmetry - as long as you have an a priori preference for everything combining.
27. Natural Reality / C. Space / 5. Relational Space
'Space' in physics just means location [Hesketh]
     Full Idea: 'Space' in physics really just means location.
     From: Gavin Hesketh (The Particle Zoo [2016], 06)
     A reaction: Location can, of course, only be specified relative to something else. Space is really an abstraction, but at least it means there is some sort of background to locate all the fundamental fields.
27. Natural Reality / E. Cosmology / 8. Dark Matter
The universe is 68% dark energy, 27% dark matter, 5% regular matter [Hesketh]
     Full Idea: The most precise surveys of the stars and galaxies tell us that the universe is made up of 68% dark energy, 27% dark matter, and just 5% regular matter (the stuff of the Standard Model of particle physics).
     From: Gavin Hesketh (The Particle Zoo [2016], 09)
     A reaction: Regular matter - that's me, that is.
27. Natural Reality / E. Cosmology / 9. Fine-Tuned Universe
If a cosmic theory relies a great deal on fine-tuning basic values, it is probably wrong [Hesketh]
     Full Idea: If a theory has to rely on excessive 'fine-tuning', a series of extremely unlikely events in order to produce the universe we see around us, then it is extremely unlikely that this theory is correct.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: He says the Standard Model has 26 parameters which are only known by experiment, rather than by theory. So instead of saying '...so there is a God', we should say '...so our theory isn't very good'.
27. Natural Reality / G. Biology / 3. Evolution
Cultural evolution is Lamarckian and fast, biological evolution is Darwinian and slow [Wilson,EO]
     Full Idea: Cultural evolution is Lamarckian and very fast, whereas biological evolution is Darwinian and usually very slow.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.4)
     A reaction: An intriguing point, given how discredited Lamarckian evolution is. It links with the Dawkins idea of 'memes' - cultural ideas which spread very fast. Is biological evolution suddenly about to become Lamarckian, as culture influences biology?
Over 99 percent of human evolution has been in the hunter-gatherer phase [Wilson,EO]
     Full Idea: Selection pressures of hunter-gatherer existence have persisted for over 99 percent of human genetic evolution.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.4)
     A reaction: This seems a key point to bear in mind when assessing human nature. Hunter-gathering isn't just one tendency in our genetics; it more or less constitutes everything we are.
29. Religion / D. Religious Issues / 1. Religious Commitment / a. Religious Belief
It is estimated that mankind has produced 100,000 religions [Wilson,EO]
     Full Idea: Since the first recorded religion (in Iraq 60,000 years ago) it is estimated that mankind has produced in the order of one hundred thousand religions.
     From: Edmund O. Wilson (On Human Nature [1978], Ch.8)
     A reaction: If asked to guess the number, I would probably have said '200'! This staggering figure seems to argue both ways - it suggest a certain arbitrariness in the details of religions, but an extremely intense drive to have some sort of religious belief.