Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'True Method in Philosophy and Theology' and 'The Statesman'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

1. Philosophy / F. Analytic Philosophy / 2. Analysis by Division
Whenever you perceive a community of things, you should also hunt out differences in the group [Plato]
     Full Idea: The rule is that when one perceives first the community between the members of a group of many things, one should not desist until one sees in it all those differences that are located in classes.
     From: Plato (The Statesman [c.356 BCE], 285b)
     A reaction: He goes on to recommend the opposite as well - see community even when there appears to be nothing but differences. I take this to be analysis, just as much as modern linguistic approaches are. Analyse the world, not language.
2. Reason / D. Definition / 2. Aims of Definition
No one wants to define 'weaving' just for the sake of weaving [Plato]
     Full Idea: I don't suppose that anyone with any sense would want to hunt down the definition of 'weaving' for the sake of weaving itself.
     From: Plato (The Statesman [c.356 BCE], 285d)
     A reaction: The point seems to be that the definition brings out the connections between weaving and other activities and objects, thus enlarging our understanding.
To reveal a nature, divide down, and strip away what it has in common with other things [Plato]
     Full Idea: Let's take the kind posited and cut it in two, .then follow the righthand part of what we've cut, and hold onto things that the sophist is associated with until we strip away everything he has in common with other things, then display his peculiar nature.
     From: Plato (The Statesman [c.356 BCE], 264e)
     A reaction: This seems to be close to Aristotle's account of definition, when he is trying to get at what-it-is-to-be some thing. But if you strip away everything the definiendum has in common with other things, will anything remain?
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
What is not active is nothing [Leibniz]
     Full Idea: We can now show from the inner truths of metaphysics that what is not active is nothing.
     From: Gottfried Leibniz (True Method in Philosophy and Theology [1686], p.64)
     A reaction: This is Leibniz's rebellion against the Cartesian idea that all that matters for natural existence is spatial extension. I agree (tentatively) with Leibniz's vision of nature here. Modern physics reveals a seething turmoil beneath the placid exterior.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
12. Knowledge Sources / A. A Priori Knowledge / 3. Innate Knowledge / b. Recollection doctrine
The soul gets its goodness from god, and its evil from previous existence. [Plato]
     Full Idea: From its composer the soul possesses all beautiful things, but from its former condition, everything that proves to be harsh and unjust in heaven.
     From: Plato (The Statesman [c.356 BCE], 273b)
     A reaction: A neat move to explain the origins of evil (or rather, to shift the problem of evil to a long long way from here). This view presumably traces back to the views of Empedocles on good and evil. Can the soul acquire evil in its current existence?
19. Language / F. Communication / 1. Rhetoric
The question of whether or not to persuade comes before the science of persuasion [Plato]
     Full Idea: The science of whether one must persuade or not must rule over the science capable of persuading.
     From: Plato (The Statesman [c.356 BCE], 304c)
     A reaction: Plato probably thinks that reason has to be top of the pyramid, but there is always the Nietzschean/romantic question of why we should place such a value on what is rational.
21. Aesthetics / A. Aesthetic Experience / 5. Natural Beauty
Non-physical beauty can only be shown clearly by speech [Plato]
     Full Idea: The bodiless things, being the most beautiful and the greatest, are only shown with clarity by speech and nothing else.
     From: Plato (The Statesman [c.356 BCE], 286a)
     A reaction: Unfortunately this will be true of warped and ugly ideas as well.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / f. The Mean
The arts produce good and beautiful things by preserving the mean [Plato]
     Full Idea: It is by preserving the mean that arts produce everything that is good and beautiful.
     From: Plato (The Statesman [c.356 BCE], 284b)
24. Political Theory / D. Ideologies / 5. Democracy / a. Nature of democracy
Democracy is the worst of good constitutions, but the best of bad constitutions [Plato, by Aristotle]
     Full Idea: Plato judged that when the constitution is decent, democracy is the worst of them, but when they are bad it is the best.
     From: report of Plato (The Statesman [c.356 BCE], 302e) by Aristotle - Politics 1289b07
     A reaction: Aristotle denies that a good oligarchy is superior. What of technocracy? The challenge is to set up institutions which ensure the health of the democracy. The big modern problem is populists who lie.
28. God / A. Divine Nature / 2. Divine Nature
Only divine things can always stay the same, and bodies are not like that [Plato]
     Full Idea: It is fitting for only the most divine things of all to be always the same and in the same state and in the same respects, and the nature of body is not of this ordering.
     From: Plato (The Statesman [c.356 BCE], 269b)