Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Philosophy of Mathematics' and 'First-Order Modal Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


95 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions should be replaceable by primitives, and should not be creative [Brown,JR]
     Full Idea: The standard requirement of definitions involves 'eliminability' (any defined terms must be replaceable by primitives) and 'non-creativity' (proofs of theorems should not depend on the definition).
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: [He cites Russell and Whitehead as a source for this view] This is the austere view of the mathematician or logician. But almost every abstract concept that we use was actually defined in a creative way.
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory says that natural numbers are an actual infinity (to accommodate their powerset) [Brown,JR]
     Full Idea: The set-theory account of infinity doesn't just say that we can keep on counting, but that the natural numbers are an actual infinite set. This is necessary to make sense of the powerset of ω, as the set of all its subsets, and thus even bigger.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: I don't personally find this to be sufficient reason to commit myself to the existence of actual infinities. In fact I have growing doubts about the whole role of set theory in philosophy of mathematics. Shows how much I know.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory assumed that there is a set for every condition [Brown,JR]
     Full Idea: In the early versions of set theory ('naïve' set theory), the axiom of comprehension assumed that for any condition there is a set of objects satisfying that condition (so P(x)↔x∈{x:P(x)}), but this led directly to Russell's Paradox.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: How rarely any philosophers state this problem clearly (as Brown does here). This is incredibly important for our understanding of how we classify the world. I'm tempted to just ignore Russell, and treat sets in a natural and sensible way.
Nowadays conditions are only defined on existing sets [Brown,JR]
     Full Idea: In current set theory Russell's Paradox is avoided by saying that a condition can only be defined on already existing sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: A response to Idea 9613. This leaves us with no account of how sets are created, so we have the modern notion that absolutely any grouping of daft things is a perfectly good set. The logicians seem to have hijacked common sense.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The 'iterative' view says sets start with the empty set and build up [Brown,JR]
     Full Idea: The modern 'iterative' concept of a set starts with the empty set φ (or unsetted individuals), then uses set-forming operations (characterized by the axioms) to build up ever more complex sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The only sets in our system will be those we can construct, rather than anything accepted intuitively. It is more about building an elaborate machine that works than about giving a good model of reality.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
A flock of birds is not a set, because a set cannot go anywhere [Brown,JR]
     Full Idea: Neither a flock of birds nor a pack of wolves is strictly a set, since a flock can fly south, and a pack can be on the prowl, whereas sets go nowhere and menace no one.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: To say that the pack menaced you would presumably be to commit the fallacy of composition. Doesn't the number 64 have properties which its set-theoretic elements (whatever we decide they are) will lack?
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
If a proposition is false, then its negation is true [Brown,JR]
     Full Idea: The law of excluded middle says if a proposition is false, then its negation is true
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Surely that is the best statement of the law? How do you write that down? ¬(P)→¬P? No, because it is a semantic claim, not a syntactic claim, so a truth table captures it. Semantic claims are bigger than syntactic claims.
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are either self-evident, or stipulations, or fallible attempts [Brown,JR]
     Full Idea: The three views one could adopt concerning axioms are that they are self-evident truths, or that they are arbitrary stipulations, or that they are fallible attempts to describe how things are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: Presumably modern platonists like the third version, with others choosing the second, and hardly anyone now having the confidence to embrace the first.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox finds a contradiction in the naming of huge numbers [Brown,JR]
     Full Idea: Berry's Paradox refers to 'the least integer not namable in fewer than nineteen syllables' - a paradox because it has just been named in eighteen syllables.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Apparently George Boolos used this quirky idea as a basis for a new and more streamlined proof of Gödel's Theorem. Don't tell me you don't find that impressive.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is the only place where we are sure we are right [Brown,JR]
     Full Idea: Mathematics seems to be the one and only place where we humans can be absolutely sure that we got it right.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Apart from death and taxes, that is. Personally I am more certain of the keyboard I am typing on than I am of Pythagoras's Theorem, but the experts seem pretty confident about the number stuff.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
'There are two apples' can be expressed logically, with no mention of numbers [Brown,JR]
     Full Idea: 'There are two apples' can be recast as 'x is an apple and y is an apple, and x isn't y, and if z is an apple it is the same as x or y', which makes no appeal at all to mathematics.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: He cites this as the basis of Hartry Field's claim that science can be done without numbers. The logic is ∃x∃y∀z(Ax&Ay&(x¬=y)&(Az→z=x∨z=y)).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / n. Pi
π is a 'transcendental' number, because it is not the solution of an equation [Brown,JR]
     Full Idea: The number π is not only irrational, but it is also (unlike √2) a 'transcendental' number, because it is not the solution of an algebraic equation.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: So is that a superficial property, or a profound one? Answers on a post card.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Mathematics represents the world through structurally similar models. [Brown,JR]
     Full Idea: Mathematics hooks onto the world by providing representations in the form of structurally similar models.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This is Brown's conclusion. It needs notions of mapping, one-to-one correspondence, and similarity. I like the idea of a 'model', as used in both logic and mathematics, and children's hobbies. The mind is a model-making machine.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
There is no limit to how many ways something can be proved in mathematics [Brown,JR]
     Full Idea: I'm tempted to say that mathematics is so rich that there are indefinitely many ways to prove anything - verbal/symbolic derivations and pictures are just two.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 9)
     A reaction: Brown has been defending pictures as a form of proof. I wonder how long his list would be, if we challenged him to give more details? Some people have very low standards of proof.
Computers played an essential role in proving the four-colour theorem of maps [Brown,JR]
     Full Idea: The celebrity of the famous proof in 1976 of the four-colour theorem of maps is that a computer played an essential role in the proof.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: The problem concerns the reliability of the computers, but then all the people who check a traditional proof might also be unreliable. Quis custodet custodies?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set theory may represent all of mathematics, without actually being mathematics [Brown,JR]
     Full Idea: Maybe all of mathematics can be represented in set theory, but we should not think that mathematics is set theory. Functions can be represented as order pairs, but perhaps that is not what functions really are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: This seems to me to be the correct view of the situation. If 2 is represented as {φ,{φ}}, why is that asymmetrical? The first digit seems to be the senior and original partner, but how could the digits of 2 differ from one another?
When graphs are defined set-theoretically, that won't cover unlabelled graphs [Brown,JR]
     Full Idea: The basic definition of a graph can be given in set-theoretic terms,...but then what could an unlabelled graph be?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: An unlabelled graph will at least need a verbal description for it to have any significance at all. My daily mood-swings look like this....
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
To see a structure in something, we must already have the idea of the structure [Brown,JR]
     Full Idea: Epistemology is a big worry for structuralists. ..To conjecture that something has a particular structure, we must already have conceived of the idea of the structure itself; we cannot be discovering structures by conjecturing them.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This has to be a crucial area of discussion. Do we have our heads full of abstract structures before we look out of the window? Externalism about the mind is important here; mind and world are not utterly distinct things.
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
Sets seem basic to mathematics, but they don't suit structuralism [Brown,JR]
     Full Idea: Set theory is at the very heart of mathematics; it may even be all there is to mathematics. The notion of set, however, seems quite contrary to the spirit of structuralism.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: So much the worse for sets, I say. You can, for example, define ordinality in terms of sets, but that is no good if ordinality is basic to the nature of numbers, rather than a later addition.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
The irrationality of root-2 was achieved by intellect, not experience [Brown,JR]
     Full Idea: We could not discover irrational numbers by physical measurement. The discovery of the irrationality of the square root of two was an intellectual achievement, not at all connected to sense experience.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Brown declares himself a platonist, and this is clearly a key argument for him, and rather a good one. Hm. I'll get back to you on this one...
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
There is an infinity of mathematical objects, so they can't be physical [Brown,JR]
     Full Idea: A simple argument makes it clear that all mathematical arguments are abstract: there are infinitely many numbers, but only a finite number of physical entities, so most mathematical objects are non-physical. The best assumption is that they all are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This, it seems to me, is where constructivists score well (cf. Idea 9608). I don't have an infinity of bricks to build an infinity of houses, but I can imagine that the bricks just keep coming if I need them. Imagination is what is unbounded.
Numbers are not abstracted from particulars, because each number is a particular [Brown,JR]
     Full Idea: Numbers are not 'abstract' (in the old sense, of universals abstracted from particulars), since each of the integers is a unique individual, a particular, not a universal.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: An interesting observation which I have not seen directly stated before. Compare Idea 645. I suspect that numbers should be thought of as higher-order abstractions, which don't behave like normal universals (i.e. they're not distributed).
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Empiricists base numbers on objects, Platonists base them on properties [Brown,JR]
     Full Idea: Perhaps, instead of objects, numbers are associated with properties of objects. Basing them on objects is strongly empiricist and uses first-order logic, whereas the latter view is somewhat Platonistic, and uses second-order logic.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: I don't seem to have a view on this. You can count tomatoes, or you can count red objects, or even 'instances of red'. Numbers refer to whatever can be individuated. No individuation, no arithmetic. (It's also Hume v Armstrong on laws on nature).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
For nomalists there are no numbers, only numerals [Brown,JR]
     Full Idea: For the instinctive nominalist in mathematics, there are no numbers, only numerals.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Maybe. A numeral is a specific sign, sometimes in a specific natural language, so this seems to miss the fact that cardinality etc are features of reality, not just conventions.
Does some mathematics depend entirely on notation? [Brown,JR]
     Full Idea: Are there mathematical properties which can only be discovered using a particular notation?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: If so, this would seem to be a serious difficulty for platonists. Brown has just been exploring the mathematical theory of knots.
The most brilliant formalist was Hilbert [Brown,JR]
     Full Idea: In mathematics, the most brilliant formalist of all was Hilbert
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: He seems to have developed his fully formalist views later in his career. See Mathematics|Basis of Mathematic|Formalism in our thematic section. Kreisel denies that Hilbert was a true formalist.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
There are no constructions for many highly desirable results in mathematics [Brown,JR]
     Full Idea: Constuctivists link truth with constructive proof, but necessarily lack constructions for many highly desirable results of classical mathematics, making their account of mathematical truth rather implausible.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The tricky word here is 'desirable', which is an odd criterion for mathematical truth. Nevertheless this sounds like a good objection. How flexible might the concept of a 'construction' be?
Constructivists say p has no value, if the value depends on Goldbach's Conjecture [Brown,JR]
     Full Idea: If we define p as '3 if Goldbach's Conjecture is true' and '5 if Goldbach's Conjecture is false', it seems that p must be a prime number, but, amazingly, constructivists would not accept this without a proof of Goldbach's Conjecture.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 8)
     A reaction: A very similar argument structure to Schrödinger's Cat. This seems (as Brown implies) to be a devastating knock-down argument, but I'll keep an open mind for now.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
David's 'Napoleon' is about something concrete and something abstract [Brown,JR]
     Full Idea: David's painting of Napoleon (on a white horse) is a 'picture' of Napoleon, and a 'symbol' of leadership, courage, adventure. It manages to be about something concrete and something abstract.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 3)
     A reaction: This strikes me as the germ of an extremely important idea - that abstraction is involved in our perception of the concrete, so that they are not two entirely separate realms. Seeing 'as' involves abstraction.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
18. Thought / E. Abstraction / 1. Abstract Thought
'Abstract' nowadays means outside space and time, not concrete, not physical [Brown,JR]
     Full Idea: The current usage of 'abstract' simply means outside space and time, not concrete, not physical.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This is in contrast to Idea 9609 (the older notion of being abstracted). It seems odd that our ancestors had a theory about where such ideas came from, but modern thinkers have no theory at all. Blame Frege for that.
The older sense of 'abstract' is where 'redness' or 'group' is abstracted from particulars [Brown,JR]
     Full Idea: The older sense of 'abstract' applies to universals, where a universal like 'redness' is abstracted from red particulars; it is the one associated with the many. In mathematics, the notion of 'group' or 'vector space' perhaps fits this pattern.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: I am currently investigating whether this 'older' concept is in fact dead. It seems to me that it is needed, as part of cognitive science, and as the crucial link between a materialist metaphysic and the world of ideas.
19. Language / A. Nature of Meaning / 7. Meaning Holism / c. Meaning by Role
A term can have not only a sense and a reference, but also a 'computational role' [Brown,JR]
     Full Idea: In addition to the sense and reference of term, there is the 'computational' role. The name '2' has a sense (successor of 1) and a reference (the number 2). But the word 'two' has little computational power, Roman 'II' is better, and '2' is a marvel.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: Very interesting, and the point might transfer to natural languages. Synonymous terms carry with them not just different expressive powers, but the capacity to play different roles (e.g. slang and formal terms, gob and mouth).
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Given atomism at one end, and a finite universe at the other, there are no physical infinities [Brown,JR]
     Full Idea: There seem to be no actual infinites in the physical realm. Given the correctness of atomism, there are no infinitely small things, no infinite divisibility. And General Relativity says that the universe is only finitely large.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: If time was infinite, you could travel round in a circle forever. An atom has size, so it has a left, middle and right to it. Etc. They seem to be physical, so we will count those too.