Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Tusculan Disputations' and 'Change in View: Principles of Reasoning'

unexpand these ideas     |    start again     |     specify just one area for these texts


38 ideas

1. Philosophy / A. Wisdom / 2. Wise People
A wise man has integrity, firmness of will, nobility, consistency, sobriety, patience [Cicero]
     Full Idea: The wise man does nothing of which he can repent, nothing against his will, does everything nobly, consistently, soberly, rightly, not looking forward to anything as bound to come, is not astonished at any novel occurrence, abides by his own decisions.
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], V.xxviii)
     A reaction: Notice that the wise man never exhibits weakness of will (an Aristotelian virtue), and is consistent (as Kant proposed), and is patient (as the Stoics proposed). But Cicero doesn't think he should busy himself maximising happiness.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Philosophy is the collection of rational arguments [Cicero]
     Full Idea: Philosophy consists in the collection of rational arguments. [Philosophia ex rationum collatione constet]
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], IV.xxxviii.84)
     A reaction: A nice epigraph for this database. Philosophy is, I trust, a little more than that, because you don't just hide them away in a drawer. But if you arrange them nicely in a museum (a website, for example), not a lot more can be done.
2. Reason / A. Nature of Reason / 1. On Reason
It is a principle of reasoning not to clutter your mind with trivialities [Harman]
     Full Idea: I am assuming the following principle: Clutter Avoidance - in reasoning, one should not clutter one's mind with trivialities.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: I like Harman's interest in the psychology of reasoning. In the world of Frege, it is taboo to talk about psychology.
The rules of reasoning are not the rules of logic [Harman]
     Full Idea: Rules of deduction are rules of deductive argument; they are not rules of inference or reasoning.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 1)
     A reaction: And I have often noticed that good philosophing reasoners and good logicians are frequently not the same people.
If there is a great cost to avoiding inconsistency, we learn to reason our way around it [Harman]
     Full Idea: We sometimes discover our views are inconsistent and do not know how to revise them in order to avoid inconsistency without great cost. The best response may be to keep the inconsistency and try to avoid inferences that exploit it.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: Any decent philosopher should face this dilemma regularly. I assume non-philosophers don't compare the different compartments of their beliefs very much. Students of non-monotonic logics are trying to formalise such thinking.
Logic has little relevance to reasoning, except when logical conclusions are immediate [Harman]
     Full Idea: Although logic does not seem specially relevant to reasoning, immediate implication and immediate inconsistency do seem important for reasoning.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: Ordinary thinkers can't possibly track complex logical implications, so we have obviously developed strategies for coping. I assume formal logic is contructed from the basic ingredients of the immediate and obvious implications, such as modus ponens.
2. Reason / A. Nature of Reason / 4. Aims of Reason
Implication just accumulates conclusions, but inference may also revise our views [Harman]
     Full Idea: Implication is cumulative, in a way that inference may not be. In argument one accumulates conclusions; things are always added, never subtracted. Reasoned revision, however, can subtract from one's view as well as add.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 1)
     A reaction: This has caught Harman's attention, I think (?), because he is looking for non-monotonic reasoning (i.e. revisable reasoning) within a classical framework. If revision is responding to evidence, the logic can remain conventional.
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
10. Modality / B. Possibility / 6. Probability
The Gambler's Fallacy (ten blacks, so red is due) overemphasises the early part of a sequence [Harman]
     Full Idea: The Gambler's Fallacy says if black has come up ten times in a row, red must be highly probable next time. It overlooks how the impact of an initial run of one color can become more and more insignificant as the sequence gets longer.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 1)
     A reaction: At what point do you decide that the roulette wheel is fixed, rather than that you have fallen for the Gambler's Fallacy? Interestingly, standard induction points to the opposite conclusion. But then you have prior knowledge of the wheel.
High probability premises need not imply high probability conclusions [Harman]
     Full Idea: Propositions that are individually highly probable can have an immediate implication that is not. The fact that one can assign a high probability to P and also to 'if P then Q' is not sufficient reason to assign high probability to Q.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 3)
     A reaction: He cites Kyburg's Lottery Paradox. It is probable that there is a winning ticket, and that this ticket is not it. Thus it is NOT probable that I will win.
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
We strongly desire to believe what is true, even though logic does not require it [Harman]
     Full Idea: Moore's Paradox: one is strongly disposed not to believe both P and that one does not believe that P, while realising that these propositions are perfectly consistent with one another.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 2)
     A reaction: [Where in Moore?] A very nice example of a powerful principle of reasoning which can never be captured in logic.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
In revision of belief, we need to keep track of justifications for foundations, but not for coherence [Harman]
     Full Idea: The key issue in belief revision is whether one needs to keep track of one's original justifications for beliefs. What I am calling the 'foundations' theory says yes; what I am calling the 'coherence' theory says no.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 4)
     A reaction: I favour coherence in all things epistemological, and this idea seems to match real life, where I am very confident of many beliefs of which I have forgotten the justification. Harman says coherentists need the justification only when they doubt a belief.
Coherence is intelligible connections, especially one element explaining another [Harman]
     Full Idea: Coherence in a view consists in connections of intelligibility among the elements of the view. Among other things these included explanatory connections, which hold when part of one's view makes it intelligible why some other part should be true.
     From: Gilbert Harman (Change in View: Principles of Reasoning [1986], 7)
     A reaction: Music to my ears. I call myself an 'explanatory empiricist', and embrace a coherence theory of justification. This is the framework within which philosophy should be practised. Harman is our founder, and Paul Thagard our guru.
15. Nature of Minds / A. Nature of Mind / 2. Psuche
The soul is the heart, or blood in the heart, or part of the brain, of something living in heart or brain, or breath [Cicero]
     Full Idea: Some think the soul is the heart; Empedocles holds that the soul is blood in the heart; others said one part of the brain claimed the primacy of soul; others say the heart or brain are habitations of the soul; while others identify soul and breath.
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], I.ix.17-19)
     A reaction: A nice survey of views. Note that many of them identify the psuché/anima with physical parts of the body; only the fourth option seems to be dualist. This is despite the contemptuous response to Democritus' atomist theory of soul.
15. Nature of Minds / A. Nature of Mind / 5. Unity of Mind
How can one mind perceive so many dissimilar sensations? [Cicero]
     Full Idea: Why is it that, using the same mind, we have perception of things so utterly unlike as colour, taste, heat, smell and sound?
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], I.xx.47)
     A reaction: This leaves us with the 'binding problem', of how the dissimilar sensations are pulled together into one field of experience. It is a nice simple objection, though, to anyone who simplistically claims that the mind is self-evidently unified.
The soul has a single nature, so it cannot be divided, and hence it cannot perish [Cicero]
     Full Idea: In souls there is no mingling of ingredients, nothing of two-fold nature, so it is impossible for the soul to be divided; impossible, therefore, for it to perish either; for perishing is like the separation of parts which were maintained in union.
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], I.xxix.71)
     A reaction: Cicero knows he is pushing his luck in asserting that perishing is a sort of division. Why can't something be there one moment and gone the next? He appears to be in close agreement with Descartes about being a 'thinking thing'.
16. Persons / C. Self-Awareness / 3. Limits of Introspection
Like the eye, the soul has no power to see itself, but sees other things [Cicero]
     Full Idea: The soul has not the power of itself to see itself, but, like the eye, the soul, though it does not see itself, yet discerns other things.
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], I.xxvii)
     A reaction: The soul is a complex item which contributes many layers of interpretation to what it sees, so there is scope for parts of the soul seeing other parts. Somewhere in the middle Cicero seems to be right - there is an elusive something we can't get at.
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / a. Physicalism critique
Souls contain no properties of elements, and elements contain no properties of souls [Cicero]
     Full Idea: No beginnings of souls can be found on earth; there is no combination in souls that could be born from earth, nothing that partakes of moist or airy or fiery; for in those elements there is nothing to possess the power of memory, thought, or reflection.
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], I.xxvi.66)
     A reaction: Interesting, but I think magnetism is an instructive analogy, which has weird properties which we never perceive in elements (though it is there, buried deep - suggesting panpsychism). Cicero would be disconcerted to find that fire isn't an element.
23. Ethics / C. Virtue Theory / 3. Virtues / f. Compassion
We should not share the distress of others, but simply try to relieve it [Cicero]
     Full Idea: We ought not to share distresses ourselves for the sake of others, but we ought to relieve others of their distress if we can.
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], IV.xxvi.56)
     A reaction: This strikes me as a sensible and balanced attitude. Some people, particularly in a Christian culture, urge that feeling strong and painful compassion for others is an intrinsic good, but the commonsense view is that that just increases human suffering.
23. Ethics / C. Virtue Theory / 4. External Goods / c. Wealth
All men except philosophers fear poverty [Cicero]
     Full Idea: All men are afraid of poverty, but not a single philosopher is so.
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], V.xxxi.88)
     A reaction: Not a thought which is encountered very often in modern philosophy journals. If a person is to be 'philosophical' in the way they live, calm endurance of the vicissitudes and hardships of life has to be a key prerequisite.
24. Political Theory / D. Ideologies / 5. Democracy / f. Against democracy
If one despises illiterate mechanics individually, they are not worth more collectively [Cicero]
     Full Idea: Can anything be more foolish than to suppose that those, whom individually one despises as illiterate mechanics, are worth anything collectively?
     From: M. Tullius Cicero (Tusculan Disputations [c.44 BCE], V.xxxvi.104)
     A reaction: Aristotle disagrees (Idea 2823). In 1906 a huge number of people guessed the weight of a cow at a fair, and the average was within one pound of the truth. In our world the healthy workings of the group are warped by the mass media.