Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'First-order Logic, 2nd-order, Completeness' and 'Causation and the Flow of Energy'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic needs the sets, and its consequence has epistemological problems [Rossberg]
     Full Idea: Second-order logic raises doubts because of its ontological commitment to the set-theoretic hierarchy, and the allegedly problematic epistemic status of the second-order consequence relation.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §1)
     A reaction: The 'epistemic' problem is whether you can know the truths, given that the logic is incomplete, and so they cannot all be proved. Rossberg defends second-order logic against the second problem. A third problem is that it may be mathematics.
Henkin semantics has a second domain of predicates and relations (in upper case) [Rossberg]
     Full Idea: Henkin semantics (for second-order logic) specifies a second domain of predicates and relations for the upper case constants and variables.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This second domain is restricted to predicates and relations which are actually instantiated in the model. Second-order logic is complete with this semantics. Cf. Idea 10756.
There are at least seven possible systems of semantics for second-order logic [Rossberg]
     Full Idea: In addition to standard and Henkin semantics for second-order logic, one might also employ substitutional or game-theoretical or topological semantics, or Boolos's plural interpretation, or even a semantics inspired by Lesniewski.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This is helpful in seeing the full picture of what is going on in these logical systems.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence is intuitively semantic, and captured by model theory [Rossberg]
     Full Idea: Logical consequence is intuitively taken to be a semantic notion, ...and it is therefore the formal semantics, i.e. the model theory, that captures logical consequence.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: If you come at the issue from normal speech, this seems right, but if you start thinking about the necessity of logical consequence, that formal rules and proof-theory seem to be the foundation.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Γ |- S says S can be deduced from Γ; Γ |= S says a good model for Γ makes S true [Rossberg]
     Full Idea: Deductive consequence, written Γ|-S, is loosely read as 'the sentence S can be deduced from the sentences Γ', and semantic consequence Γ|=S says 'all models that make Γ true make S true as well'.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: We might read |= as 'true in the same model as'. What is the relation, though, between the LHS and the RHS? They seem to be mutually related to some model, but not directly to one another.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
In proof-theory, logical form is shown by the logical constants [Rossberg]
     Full Idea: A proof-theorist could insist that the logical form of a sentence is exhibited by the logical constants that it contains.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: You have to first get to the formal logical constants, rather than the natural language ones. E.g. what is the truth table for 'but'? There is also the matter of the quantifiers and the domain, and distinguishing real objects and predicates from bogus.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is a domain, and an interpretation assigning objects, predicates, relations etc. [Rossberg]
     Full Idea: A standard model is a set of objects called the 'domain', and an interpretation function, assigning objects in the domain to names, subsets to predicate letters, subsets of the Cartesian product of the domain with itself to binary relation symbols etc.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: The model actually specifies which objects have which predicates, and which objects are in which relations. Tarski's account of truth in terms of 'satisfaction' seems to be just a description of those pre-decided facts.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
If models of a mathematical theory are all isomorphic, it is 'categorical', with essentially one model [Rossberg]
     Full Idea: A mathematical theory is 'categorical' if, and only if, all of its models are isomorphic. Such a theory then essentially has just one model, the standard one.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: So the term 'categorical' is gradually replacing the much-used phrase 'up to isomorphism'.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness can always be achieved by cunning model-design [Rossberg]
     Full Idea: All that should be required to get a semantics relative to which a given deductive system is complete is a sufficiently cunning model-theorist.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §5)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
A deductive system is only incomplete with respect to a formal semantics [Rossberg]
     Full Idea: No deductive system is semantically incomplete in and of itself; rather a deductive system is incomplete with respect to a specified formal semantics.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This important point indicates that a system might be complete with one semantics and incomplete with another. E.g. second-order logic can be made complete by employing a 'Henkin semantics'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
26. Natural Theory / C. Causation / 4. Naturalised causation
Science has shown that causal relations are just transfers of energy or momentum [Fair, by Sosa/Tooley]
     Full Idea: Basic causal relations can, as a consequence of our scientific knowledge, be identified with certain physicalistic [sic] relations between objects that can be characterized in terms of transference of either energy or momentum between objects.
     From: report of David Fair (Causation and the Flow of Energy [1979]) by E Sosa / M Tooley - Introduction to 'Causation' §1
     A reaction: Presumably a transfer of momentum is a transfer of energy. If only anyone had the foggiest idea what energy actually is, we'd be doing well. What is energy made of? 'No identity without substance', I say. I like Fair's idea.
Fair shifted his view to talk of counterfactuals about energy flow [Fair, by Schaffer,J]
     Full Idea: Fair, who originated the energy flow view of causation, moved to a view that understands connection in terms of counterfactuals about energy flow.
     From: report of David Fair (Causation and the Flow of Energy [1979]) by Jonathan Schaffer - The Metaphysics of Causation 2.1.2
     A reaction: David Fair was a pupil of David Lewis, the king of the counterfactual view. To me that sounds like a disappointing move, but it is hard to think that a mere flow of energy through space would amount to causation. Cause must work back from an effect.