Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Phenomenology of Perception' and 'Theory of Science (Wissenschaftslehre, 4 vols)'

unexpand these ideas     |    start again     |     specify just one area for these texts


29 ideas

2. Reason / B. Laws of Thought / 1. Laws of Thought
The laws of thought are true, but they are not the axioms of logic [Bolzano, by George/Van Evra]
     Full Idea: Bolzano said the 'laws of thought' (identity, contradiction, excluded middle) are true, but nothing of interest follows from them. Logic obeys them, but they are not logic's first principles or axioms.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837], §3) by George / Van Evra - The Rise of Modern Logic
     A reaction: An interesting and crucial distinction. For samples of proposed axioms of logic, see Ideas 6408, 7798 and 7797.
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Bolzano wanted to reduce all of geometry to arithmetic [Bolzano, by Brown,JR]
     Full Idea: Bolzano if the father of 'arithmetization', which sought to found all of analysis on the concepts of arithmetic and to eliminate geometrical notions entirely (with logicism taking it a step further, by reducing arithmetic to logic).
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by James Robert Brown - Philosophy of Mathematics Ch. 3
     A reaction: Brown's book is a defence of geometrical diagrams against Bolzano's approach. Bolzano sounds like the modern heir of Pythagoras, if he thinks that space is essentially numerical.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Bolzano began the elimination of intuition, by proving something which seemed obvious [Bolzano, by Dummett]
     Full Idea: Bolzano began the process of eliminating intuition from analysis, by proving something apparently obvious (that as continuous function must be zero at some point). Proof reveals on what a theorem rests, and that it is not intuition.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Michael Dummett - Frege philosophy of mathematics Ch.6
     A reaction: Kant was the target of Bolzano's attack. Two responses might be to say that many other basic ideas are intuited but impossible to prove, or to say that proof itself depends on intuition, if you dig deep enough.
7. Existence / C. Structure of Existence / 1. Grounding / c. Grounding and explanation
Philosophical proofs in mathematics establish truths, and also show their grounds [Bolzano, by Correia/Schnieder]
     Full Idea: Mathematical proofs are philosophical in method if they do not only demonstrate that a certain mathematical truth holds but if they also disclose why it holds, that is, if they uncover its grounds.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Correia,F/Schnieder,B - Grounding: an opinionated introduction 2.3
     A reaction: I aim to defend the role of explanation in mathematics, but this says that this is only if the proofs are 'philosophical', which may be of no interest to mathematicians. Oh well, that's their loss.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
11. Knowledge Aims / B. Certain Knowledge / 4. The Cogito
Consciousness is based on 'I can', not on 'I think' [Merleau-Ponty]
     Full Idea: Consciousness is in the first place not a matter of 'I think' but of 'I can'.
     From: Maurice Merleau-Ponty (Phenomenology of Perception [1945], p.159), quoted by Beth Lord - Spinoza's Ethics 2 'Sensation'
     A reaction: The point here (quoted during a discussion of Spinoza) is that you can't leave out the role of the body, which seems correct.
12. Knowledge Sources / B. Perception / 5. Interpretation
The mind does not unite perceptions, because they flow into one another [Merleau-Ponty]
     Full Idea: I do not have one perception, then another, and between them a link brought about by the mind. Rather, each perspective merges into the other [against a unified background].
     From: Maurice Merleau-Ponty (Phenomenology of Perception [1945], p.329-30), quoted by Kevin Aho - Existentialism: an introduction 3 'Perceptual'
     A reaction: I take this to be another piece of evidence pointing to realism as the best explanation of experience. A problem for Descartes is what unites the sequence of thoughts.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Bolzano wanted to avoid Kantian intuitions, and prove everything that could be proved [Bolzano, by Dummett]
     Full Idea: Bolzano was determined to expel Kantian intuition from analysis, and to prove from first principles anything that could be proved, no matter how obvious it might seem when thought of in geometrical terms.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Michael Dummett - The Philosophy of Mathematics 2.3
     A reaction: This is characteristic of the Enlightenment Project, well after the Enlightenment. It is a step towards Frege's attack on 'psychologism' in mathematics. The problem is that it led us into a spurious platonism. We live in troubled times.
19. Language / D. Propositions / 1. Propositions
Bolzano saw propositions as objective entities, existing independently of us [Bolzano, by Potter]
     Full Idea: Bolzano took the entities of which truth is predicated to be not propositions in the subjective sense but 'propositions-in-themselves' - objective entities existing independent of our apprehension.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Emp'
     A reaction: A serious mistake. Presumably the objective propositions are all true (or there would be endless infinities of them). So what is assessed in the case of error? Something other than the objective propositions! We assess these other things!
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
Propositions are abstract structures of concepts, ready for judgement or assertion [Bolzano, by Correia/Schnieder]
     Full Idea: Bolzano conceived of propositions as abstract objects which are structured compounds of concepts and potential contents of judgements and assertions.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Correia,F/Schnieder,B - Grounding: an opinionated introduction 2.3
     A reaction: Personally I think of propositions as brain events, the constituents of thought about the world, but that needn't contradict the view of them as 'abstract'.
A 'proposition' is the sense of a linguistic expression, and can be true or false [Bolzano]
     Full Idea: What I mean by 'propositions' is not what the grammarians call a proposition, namely the linguistic expression, but the mere sense of this expression, is what is meant by proposition in itself or object proposition. This sense can be true or false.
     From: Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837], Pref?)
     A reaction: This seems to be the origin of what we understand by 'proposition'. The disputes are over whether such things exists, and whether they are features of minds or features of the world (resembling facts).
19. Language / E. Analyticity / 2. Analytic Truths
The ground of a pure conceptual truth is only in other conceptual truths [Bolzano]
     Full Idea: We can find the ground of a pure conceptual truth only in other conceptual truths.
     From: Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837], Pref)
     A reaction: Elsewhere he insists that these grounds must be in 'truths', and not just in the attributes of the concepts of involved. This conflicts with Kit Fine's view, that the concepts themselves are the source of conceptual truth and necessity.