Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Believing the Axioms I' and 'Method and Results'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
New axioms are being sought, to determine the size of the continuum [Maddy]
     Full Idea: In current set theory, the search is on for new axioms to determine the size of the continuum.
     From: Penelope Maddy (Believing the Axioms I [1988], §0)
     A reaction: This sounds the wrong way round. Presumably we seek axioms that fix everything else about set theory, and then check to see what continuum results. Otherwise we could just pick our continuum, by picking our axioms.
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
     Full Idea: Most writers agree that if any sense can be made of the distinction between analytic and synthetic, then the Axiom of Extensionality should be counted as analytic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [Boolos is the source of the idea] In other words Extensionality is not worth discussing, because it simply tells you what the world 'set' means, and there is no room for discussion about that. The set/class called 'humans' varies in size.
Extensional sets are clearer, simpler, unique and expressive [Maddy]
     Full Idea: The extensional view of sets is preferable because it is simpler, clearer, and more convenient, because it individuates uniquely, and because it can simulate intensional notions when the need arises.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [She cites Fraenkel, Bar-Hillet and Levy for this] The difficulty seems to be whether the extensional notion captures our ordinary intuitive notion of what constitutes a group of things, since that needs flexible size and some sort of unity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinite sets are essential for giving an account of the real numbers [Maddy]
     Full Idea: If one is interested in analysis then infinite sets are indispensable since even the notion of a real number cannot be developed by means of finite sets alone.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: [Maddy is citing Fraenkel, Bar-Hillel and Levy] So Cantor's great breakthrough (Idea 13021) actually follows from the earlier acceptance of the real numbers, so that's where the departure from common sense started.
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
     Full Idea: The Axiom of Infinity is a simple statement of Cantor's great breakthrough. His bold hypothesis that a collection of elements that had lurked in the background of mathematics could be infinite launched modern mathematics.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: It also embodies one of those many points where mathematics seems to depart from common sense - but then most subjects depart from common sense when they get more sophisticated. Look what happened to art.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
     Full Idea: The Power Set Axiom is indispensable for a set-theoretic account of the continuum, ...and in so far as those attempts are successful, then the power-set principle gains some confirmatory support.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.6)
     A reaction: The continuum is, of course, notoriously problematic. Have we created an extra problem in our attempts at solving the first one?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
     Full Idea: Jordain made consistent and ill-starred efforts to prove the Axiom of Choice.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This would appear to be the fate of most axioms. You would presumably have to use a different system from the one you are engaged with to achieve your proof.
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
     Full Idea: Resistance to the Axiom of Choice centred on opposition between existence and construction. Modern set theory thrives on a realistic approach which says the choice set exists, regardless of whether it can be defined, constructed, or given by a rule.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This seems to be a key case for the ontology that lies at the heart of theory. Choice seems to be an invaluable tool for proofs, so it won't go away, so admit it to the ontology. Hm. So the tools of thought have existence?
A large array of theorems depend on the Axiom of Choice [Maddy]
     Full Idea: Many theorems depend on the Axiom of Choice, including that a countable union of sets is countable, and results in analysis, topology, abstract algebra and mathematical logic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: The modern attitude seems to be to admit anything if it leads to interesting results. It makes you wonder about the modern approach of using mathematics and logic as the cutting edges of ontological thinking.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
     Full Idea: The Iterative Conception (Zermelo 1930) says everything appears at some stage. Given two objects a and b, let A and B be the stages at which they first appear. Suppose B is after A. Then the pair set of a and b appears at the immediate stage after B.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: Presumably this all happens in 'logical time' (a nice phrase I have just invented!). I suppose we might say that the existence of the paired set is 'forced' by the preceding sets. No transcendental inferences in this story?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
     Full Idea: The 'limitation of size' is a vague intuition, based on the idea that being too large may generate the paradoxes.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: This is an intriguing idea to be found right at the centre of what is supposed to be an incredibly rigorous system.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
17. Mind and Body / A. Mind-Body Dualism / 6. Epiphenomenalism
T.H.Huxley gave the earliest clear statement of epiphenomenalism [Huxley, by Rey]
     Full Idea: T.H.Huxley gave the earliest clear statement of epiphenomenalism.
     From: report of T.H. Huxley (Method and Results [1893]) by Georges Rey - Contemporary Philosophy of Mind 3.1.1
     A reaction: This is, of course, impossible, because there can't be a clear statement of epiphenomenalism.
Brain causes mind, but it doesn't seem that mind causes actions [Huxley]
     Full Idea: All states of consciousness are caused by molecular changes of brain substance. It seems to me there is no proof that any state of consciousness is the cause of change in the motion of the matter of the organism.
     From: T.H. Huxley (Method and Results [1893], p.244), quoted by Georges Rey - Contemporary Philosophy of Mind 3.1.1
     A reaction: This sounds odd. Most people would say there is nothing more obvious than mental events causing actions. It certainly seems undeniable that actions are cause by the contents of thoughts, so a molecular account of intentional states is needed.