Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Truth by Convention' and 'Buddhacarita'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
If if time is money then if time is not money then time is money then if if if time is not money... [Quine]
     Full Idea: If if time is money then if time is not money then time is money then if if if time is not money then time is money then time is money then if time is money then time is money.
     From: Willard Quine (Truth by Convention [1935], p.95)
     A reaction: Quine offers this with no hint of a smile. I reproduce it for the benefit of people who hate analytic philosophy, and get tired of continental philosophy being attacked for its obscurity.
2. Reason / D. Definition / 7. Contextual Definition
Definition by words is determinate but relative; fixing contexts could make it absolute [Quine]
     Full Idea: A definition endows a word with complete determinacy of meaning relative to other words. But we could determine the meaning of a new word absolutely by specifying contexts which are to be true and contexts which are to be false.
     From: Willard Quine (Truth by Convention [1935], p.89)
     A reaction: This is the beginning of Quine's distinction between the interior of 'the web' and its edges. The attack on the analytic/synthetic distinction will break down the boundary between the two. Surprising to find 'absolute' anywhere in Quine.
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Quine quickly dismisses If-thenism [Quine, by Musgrave]
     Full Idea: Quine quickly dismisses If-thenism.
     From: report of Willard Quine (Truth by Convention [1935], p.327) by Alan Musgrave - Logicism Revisited §5
     A reaction: [Musgrave quotes a long chunk of Quine which is hard to compress!] Effectively, he says If-thenism is cheating, or begs the question, by eliminating whole sections of perfectly good mathematics, because they cannot be derived from axioms.
5. Theory of Logic / C. Ontology of Logic / 4. Logic by Convention
Logic needs general conventions, but that needs logic to apply them to individual cases [Quine, by Rey]
     Full Idea: Quine argues that logic could not be established by conventions, since the logical truths, being infinite in number, must be given by general conventions rather than singly; and logic is needed in the meta-theory, to apply to individual cases.
     From: report of Willard Quine (Truth by Convention [1935]) by Georges Rey - The Analytic/Synthetic Distinction 3.4
     A reaction: A helpful insight into Quine's claim. If only someone would print these one sentence summaries at the top of classic papers, we would all get far more out of them at first reading. Assuming Rey is right!
Claims that logic and mathematics are conventional are either empty, uninteresting, or false [Quine]
     Full Idea: If logic and mathematics being true by convention says the primitives can be conventionally described, that works for anything, and is empty; if the conventions are only for those fields, that's uninteresting; if a general practice, that is false.
     From: Willard Quine (Truth by Convention [1935], p.102)
     A reaction: This is Quine's famous denial of the traditional platonist view, and the new Wittgensteinian conventional view, preparing the ground for a more naturalistic and empirical view. I feel more sympathy with Quine than with the other two.
Logic isn't conventional, because logic is needed to infer logic from conventions [Quine]
     Full Idea: If logic is to proceed mediately from conventions, logic is needed for inferring logic from the conventions. Conventions for adopting logical primitives can only be communicated by free use of those very idioms.
     From: Willard Quine (Truth by Convention [1935], p.104)
     A reaction: A common pattern of modern argument, which always seems to imply that nothing can ever get off the ground. I suspect that there are far more benign circles in the world of thought than most philosophers imagine.
If a convention cannot be communicated until after its adoption, what is its role? [Quine]
     Full Idea: When a convention is incapable of being communicated until after its adoption, its role is not clear.
     From: Willard Quine (Truth by Convention [1935], p.106)
     A reaction: Quine is discussing the basis of logic, but the point applies to morality - that if there is said to be a convention at work, the concepts of morality must already exist to get the conventional framework off the ground. What is it that comes first?
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If analytic geometry identifies figures with arithmetical relations, logicism can include geometry [Quine]
     Full Idea: Geometry can be brought into line with logicism simply by identifying figures with arithmetical relations with which they are correlated thought analytic geometry.
     From: Willard Quine (Truth by Convention [1935], p.87)
     A reaction: Geometry was effectively reduced to arithmetic by Descartes and Fermat, so this seems right. You wonder, though, whether something isn't missing if you treat geometry as a set of equations. There is more on the screen than what's in the software.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
There are four different possible conventional accounts of geometry [Quine]
     Full Idea: We can construe geometry by 1) identifying it with algebra, which is then defined on the basis of logic; 2) treating it as hypothetical statements; 3) defining it contextually; or 4) making it true by fiat, without making it part of logic.
     From: Willard Quine (Truth by Convention [1935], p.99)
     A reaction: [Very compressed] I'm not sure how different 3 is from 2. These are all ways to treat geometry conventionally. You could be more traditional, and say that it is a description of actual space, but the multitude of modern geometries seems against this.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
If mathematics follows from definitions, then it is conventional, and part of logic [Quine]
     Full Idea: To claim that mathematical truths are conventional in the sense of following logically from definitions is the claim that mathematics is a part of logic.
     From: Willard Quine (Truth by Convention [1935], p.79)
     A reaction: Quine is about to attack logic as convention, so he is endorsing the logicist programme (despite his awareness of Gödel), but resisting the full Wittgenstein conventionalist picture.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
16. Persons / E. Rejecting the Self / 4. Denial of the Self
When the Buddha reached the highest level of insight, he could detect no self in the world [Ashvaghosha]
     Full Idea: The great Buddha passed through the eight stages of Transic insight, and quickly reached their highest point. From the summit of the world downwards he could detect no self anywhere.
     From: Ashvaghosha (Buddhacarita [c.50], XIV)
     A reaction: In the manner of Nietzsche, I am inclined to say that they find what they want to find, because that is their value. They want to get rid of the self, and dream of a mode in which existence continues without it. Is Buddhism opposed to human life?
29. Religion / C. Spiritual Disciplines / 3. Buddhism
The first stage of trance is calm amidst applied and discursive thinking [Ashvaghosha]
     Full Idea: The first stage of trance is calm amidst applied and discursive thinking.
     From: Ashvaghosha (Buddhacarita [c.50], V.11)
     A reaction: Personally I am not sure that I would want to go any further that the first stage, since the elimination of discursive thinking seems to me to be approaching death. To pursue intense thinking very calmly I take to be the ideal of all western philosophers.
The Buddha sought ultimate reality and the final goal of existence in his meditations [Ashvaghosha]
     Full Idea: Next the Boddhisatva, possessed of great skill in Transic meditation, put himself into a trance, intent on discerning both the ultimate reality of things and the final goal of existence.
     From: Ashvaghosha (Buddhacarita [c.50], XIV.2)
     A reaction: The ontological and teleological goals of the Buddha were identical to the goals of the ancient Greek philosophers, and even we have teleological aims in our study of evolution. I would expect better results from the western approach.