Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Against Euthanasia' and 'Begriffsschrift'

unexpand these ideas     |    start again     |     specify just one area for these texts


40 ideas

1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
Frege changed philosophy by extending logic's ability to check the grounds of thinking [Potter on Frege]
     Full Idea: Frege's 1879 logic transformed philosophy because it greatly expanded logic's reach - what thought can achieve unaided - and hence compelled a re-examination of everything previously said about the grounds of thought when logic gives out.
     From: comment on Gottlob Frege (Begriffsschrift [1879]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 Intro
     A reaction: I loved the gloss on logic as 'what thought can achieve unaided'. I largely see logic in terms of what is mechanically computable.
2. Reason / B. Laws of Thought / 1. Laws of Thought
We should not describe human laws of thought, but how to correctly track truth [Frege, by Fisher]
     Full Idea: Frege disagree that logic should merely describe the laws of thought - how people actually did reason. Logic is essentially normative, not descriptive. We want the one logic which successfully tracks the truth.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Jennifer Fisher - On the Philosophy of Logic 1.III
     A reaction: This explains Frege's sustained attack on psychologism, and it also explains we he ended up as a platonist about logic - because he wanted its laws to be valid independently of human thinking. A step too far, perhaps. Brains are truth machines.
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
I don't use 'subject' and 'predicate' in my way of representing a judgement [Frege]
     Full Idea: A distinction of subject and predicate finds no place in my way of representing a judgement.
     From: Gottlob Frege (Begriffsschrift [1879], §03)
     A reaction: Perhaps this sentence could be taken as the beginning of modern analytical philosophy. The old view doesn't seem to me entirely redundant - merely replaced by a much more detailed analysis of what makes a 'subject' and what makes a 'predicate'.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
For Frege, 'All A's are B's' means that the concept A implies the concept B [Frege, by Walicki]
     Full Idea: 'All A's are B's' meant for Frege that the concept A implies the concept B, or that to be A implies also to be B. Moreover this applies to arbitrary x which happens to be A.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Michal Walicki - Introduction to Mathematical Logic History D.2
     A reaction: This seems to hit the renate/cordate problem. If all creatures with hearts also have kidneys, does that mean that being enhearted logically implies being kidneyfied? If all chimps are hairy, is that a logical requirement? Is inclusion implication?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Frege has a judgement stroke (vertical, asserting or judging) and a content stroke (horizontal, expressing) [Frege, by Weiner]
     Full Idea: Frege distinguished between asserting a proposition and expressing it, and he introduced the judgement stroke (a small vertical line, assertion) and the content stroke (a long horizontal line, expression) to represent them.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege Ch.3
     A reaction: There are also strokes for conditional and denial.
The laws of logic are boundless, so we want the few whose power contains the others [Frege]
     Full Idea: Since in view of the boundless multitude of laws that can be enunciated we cannot list them all, we cannot achieve completeness except by searching out those that, by their power, contain all of them.
     From: Gottlob Frege (Begriffsschrift [1879], §13)
     A reaction: He refers to these laws in the previous sentence as the 'core'. His talk of 'power' is music to my ears, since it implies a direction of explanation. Burge says the power is that of defining other concepts.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
In 1879 Frege developed second order logic [Frege, by Putnam]
     Full Idea: By 1879 Frege had discovered an algorithm, a mechanical proof procedure, that embraces what is today standard 'second order logic'.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Hilary Putnam - Reason, Truth and History Ch.5
     A reaction: Note that Frege did more than introduce quantifiers, and the logic of predicates.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Frege replaced Aristotle's subject/predicate form with function/argument form [Frege, by Weiner]
     Full Idea: Frege's regimentation is based on the view of the simplest sort of statement as having, not subject/predicate form (as in Aristotle), but function/argument form.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege
     A reaction: This looks like being a crucial move into the modern world, where one piece of information is taken in and dealt with, as in computer procedures. Have educated people reorganised their minds along Fregean lines?
5. Theory of Logic / G. Quantification / 1. Quantification
A quantifier is a second-level predicate (which explains how it contributes to truth-conditions) [Frege, by George/Velleman]
     Full Idea: The contribution of the quantifier to the truth conditions of sentences of which it is a part cannot be adequately explained if it is treated as other than a second-level predicate (for instance, if it is viewed as name).
     From: report of Gottlob Frege (Begriffsschrift [1879]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: They suggest that this makes it something like a 'property of properties'. With this account it becomes plausible to think of numbers as quantifiers (since they do, after all, specify quantities).
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
For Frege the variable ranges over all objects [Frege, by Tait]
     Full Idea: For Frege the variable ranges over all objects.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by William W. Tait - Frege versus Cantor and Dedekind XII
     A reaction: The point is that Frege had not yet seen the necessity to define the domain of quantification, and this leads him into various difficulties.
Frege's domain for variables is all objects, but modern interpretations first fix the domain [Dummett on Frege]
     Full Idea: For Frege there is no need to specify the domain of the individual variables, which is taken as the totality of all objects. This contrasts with the standard notion of an interpretation, which demands that we first fix the domain.
     From: comment on Gottlob Frege (Begriffsschrift [1879]) by Michael Dummett - Frege Philosophy of Language (2nd ed) Ch.14
     A reaction: What intrigues me is how domains of quantification shift according to context in ordinary usage, even in mid-sentence. I ought to go through every idea in this database, specifying its domain of quantification. Any volunteers?
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Frege introduced quantifiers for generality [Frege, by Weiner]
     Full Idea: In order to express generality, Frege introduced quantifier notation.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege
     A reaction: This is the birth of predicate logic, beloved of analytical philosophers (but of no apparent interest to phenomenalists, deconstructionists, existentialists?). Generality is what you get from induction (which is, of course, problematic).
Frege reduced most quantifiers to 'everything' combined with 'not' [Frege, by McCullogh]
     Full Idea: Frege treated 'everything' as basic, and suggested ways of recasting propositions containing other quantifiers so that this was the only one remaining. He recast 'something' as 'at least one thing', and defined this in terms of 'everything' and 'not'.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Gregory McCullogh - The Game of the Name 1.6
     A reaction: Extreme parsimony seems highly desirable in logic as well as ontology, but it can lead to frustrations, especially over the crucial question of the existence of things quantified over. See Idea 6068.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
Proof theory began with Frege's definition of derivability [Frege, by Prawitz]
     Full Idea: Frege's formal definition of derivability is perhaps the first investigation in general proof theory.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Dag Prawitz - Gentzen's Analysis of First-Order Proofs 2 n2
     A reaction: In 'On General Proof Theory §1' Prawitz says "proof theory originated with Hilbert" in 1900. Presumably Frege offered a theory, and then Hilbert saw it as a general project.
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Frege produced axioms for logic, though that does not now seem the natural basis for logic [Frege, by Kaplan]
     Full Idea: Frege's work supplied a set of axioms for logic itself, at least partly because it was a well-known way of presenting the foundations in other disciplines, especially mathematics, but it does not nowadays strike us as natural for logic.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by David Kaplan - Dthat 5.1
     A reaction: What Bostock has in mind is the so-called 'natural' deduction systems, which base logic on rules of entailment, rather than on a set of truths. The axiomatic approach uses a set of truths, plus the idea of possible contradictions.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
It may be possible to define induction in terms of the ancestral relation [Frege, by Wright,C]
     Full Idea: Frege's account of the ancestral has made it possible, in effect, to define the natural numbers as entities for which induction holds.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Crispin Wright - Frege's Concept of Numbers as Objects 4.xix
     A reaction: This is the opposite of the approach in the Peano Axioms, where induction is used to define the natural numbers.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Frege's logic has a hierarchy of object, property, property-of-property etc. [Frege, by Smith,P]
     Full Idea: Frege's general logical system involves a type hierarchy, distinguishing objects from properties from properties-of-properties etc., with every item belonging to a determinate level.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Peter Smith - Intro to Gödel's Theorems 14.1
     A reaction: The Theory of Types went on to apply this hierarchy to classes, where Frege's disastrous Basic Law V flattens the hierarchy of classes, putting them on the same level (Smith p.119)
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence is not a first-order property, but the instantiation of a property [Frege, by Read]
     Full Idea: When Kant said that existence was not a property, what he meant was, according to Frege, that existence is not a first-order property - it is not a property of individuals but a property of properties, that the property has an instance.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Stephen Read - Thinking About Logic Ch.5
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
19. Language / C. Assigning Meanings / 4. Compositionality
Frege's account was top-down and decompositional, not bottom-up and compositional [Frege, by Potter]
     Full Idea: Frege's account was top-down, not bottom-up: he aimed to decompose and discern function-argument structure in already existing sentences, not to explain how those sentences acquired their meanings in the first place.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'Func'
     A reaction: This goes with the holistic account of meaning, which leads to Quine's gavagai and Kuhn's obfuscation of science. I recommend compositionality for everthing.
25. Social Practice / F. Life Issues / 2. Euthanasia
We only allow voluntary euthanasia to someone who is both sane and crazed by pain [Kamisar]
     Full Idea: It seems that voluntary euthanasia can only be carried out by someone who is both sane, and crazed by pain.
     From: Yale Kamisar (Against Euthanasia [1958], p.77)
     A reaction: A fair point, despite its obvious exaggeration. How much pain must someone experience before we permit them to choose euthanasia?
People will volunteer for euthanasia because they think other people want them dead [Kamisar]
     Full Idea: In the process of voluntary euthanasia we will sweep up some who are not really tired of life, but think others are tired of them.
     From: Yale Kamisar (Against Euthanasia [1958], p.78)
     A reaction: We could permit such choices. Or set up systems to eliminate such cases.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The predicate 'exists' is actually a natural language expression for a quantifier [Frege, by Weiner]
     Full Idea: On Frege's logical analysis, the predicate 'exists' is actually a natural language expression for a quantifier.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege Ch.8
     A reaction: However see Idea 6067, for McGinn's alternative view of quantifiers. In the normal conventions of predicate logic it may be that existence is treated as a quantifier, but that is not the same as saying that existence just IS a quantifier.