Combining Texts

All the ideas for 'Locke on Human Understanding', 'Higher-Order Logic' and 'Logicism and Ontological Commits. of Arithmetic'

unexpand these ideas     |    start again     |     specify just one area for these texts


29 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
Truth in a model is more tractable than the general notion of truth [Hodes]
     Full Idea: Truth in a model is interesting because it provides a transparent and mathematically tractable model - in the 'ordinary' rather than formal sense of the term 'model' - of the less tractable notion of truth.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This is an important warning to those who wish to build their entire account of truth on Tarski's rigorously formal account of the term. Personally I think we should start by deciding whether 'true' can refer to the mental state of a dog. I say it can.
Truth is quite different in interpreted set theory and in the skeleton of its language [Hodes]
     Full Idea: There is an enormous difference between the truth of sentences in the interpreted language of set theory and truth in some model for the disinterpreted skeleton of that language.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.132)
     A reaction: This is a warning to me, because I thought truth and semantics only entered theories at the stage of 'interpretation'. I must go back and get the hang of 'skeletal' truth, which sounds rather charming. [He refers to set theory, not to logic.]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Higher-order logic may be unintelligible, but it isn't set theory [Hodes]
     Full Idea: Brand higher-order logic as unintelligible if you will, but don't conflate it with set theory.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: [he gives Boolos 1975 as a further reference] This is simply a corrective, because the conflation of second-order logic with set theory is an idea floating around in the literature.
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is a level one relation with a second-order definition [Hodes]
     Full Idea: Identity should he considered a logical notion only because it is the tip of a second-order iceberg - a level 1 relation with a pure second-order definition.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
When an 'interpretation' creates a model based on truth, this doesn't include Fregean 'sense' [Hodes]
     Full Idea: A model is created when a language is 'interpreted', by assigning non-logical terms to objects in a set, according to a 'true-in' relation, but we must bear in mind that this 'interpretation' does not associate anything like Fregean senses with terms.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This seems like a key point (also made by Hofweber) that formal accounts of numbers, as required by logic, will not give an adequate account of the semantics of number-terms in natural languages.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Mathematics is higher-order modal logic [Hodes]
     Full Idea: I take the view that (agreeing with Aristotle) mathematics only requires the notion of a potential infinity, ...and that mathematics is higher-order modal logic.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: Modern 'modal' accounts of mathematics I take to be heirs of 'if-thenism', which seems to have been Russell's development of Frege's original logicism. I'm beginning to think it is right. But what is the subject-matter of arithmetic?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
     Full Idea: Arithmetic should be able to face boldly the dreadful chance that in the actual world there are only finitely many objects.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.148)
     A reaction: This seems to be a basic requirement for any account of arithmetic, but it was famously a difficulty for early logicism, evaded by making the existence of an infinity of objects into an axiom of the system.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
     Full Idea: Full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
     A reaction: [he credits Cowles for this remark] Having an unworkable model theory sounds pretty serious to me, as I'm not inclined to be interested in languages which don't produce models of some sort. Surely models are the whole point?
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
It is claimed that numbers are objects which essentially represent cardinality quantifiers [Hodes]
     Full Idea: The mathematical object-theorist says a number is an object that represents a cardinality quantifier, with the representation relation as the entire essence of the nature of such objects as cardinal numbers like 4.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: [compressed] This a classic case of a theory beginning to look dubious once you spell it our precisely. The obvious thought is to make do with the numerical quantifiers, and dispense with the objects. Do other quantifiers need objects to support them?
Numerical terms can't really stand for quantifiers, because that would make them first-level [Hodes]
     Full Idea: The dogmatic Frege is more right than wrong in denying that numerical terms can stand for numerical quantifiers, for there cannot be a language in which object-quantifiers and objects are simultaneously viewed as level zero.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.142)
     A reaction: Subtle. We see why Frege goes on to say that numbers are level zero (i.e. they are objects). We are free, it seems, to rewrite sentences containing number terms to suit whatever logical form appeals. Numbers are just quantifiers?
7. Existence / D. Theories of Reality / 7. Fictionalism
Talk of mirror images is 'encoded fictions' about real facts [Hodes]
     Full Idea: Talk about mirror images is a sort of fictional discourse. Statements 'about' such fictions are not made true or false by our whims; rather they 'encode' facts about the things reflected in mirrors.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.146)
     A reaction: Hodes's proposal for how we should view abstract objects (c.f. Frege and Dummett on 'the equator'). The facts involved are concrete, but Hodes is offering 'encoding fictionalism' as a linguistic account of such abstractions. He applies it to numbers.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
     Full Idea: In studying second-order logic one can think of relations and functions as extensional or intensional, or one can leave it open. Little turns on this here, and so words like 'property', 'class', and 'set' are used interchangeably.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.2.1)
     A reaction: Important. Students of the metaphysics of properties, who arrive with limited experience of logic, are bewildered by this attitude. Note that the metaphysics is left wide open, so never let logicians hijack the metaphysical problem of properties.
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
Two things can only resemble one another in some respect, and that may reintroduce a universal [Lowe]
     Full Idea: A problem for resemblance nominalism is that in saying that two particulars 'resemble' one another, it is necessary to specify in what respect they do so (e.g. colour, shape, size), and this threatens to reintroduce what appears to be talk of universals.
     From: E.J. Lowe (Locke on Human Understanding [1995], Ch.7)
     A reaction: We see resemblance between faces instantly, long before we can specify the 'respects' of the resemblance. This supports the Humean hard-wired view of resemblance, rather than some appeal to Platonic universals.
9. Objects / B. Unity of Objects / 2. Substance / d. Substance defined
On substances, Leibniz emphasises unity, Spinoza independence, Locke relations to qualities [Lowe]
     Full Idea: Later philosophers emphasised different strands of Aristotle's concept of substances: Leibniz (in his theory of monads) emphasised their unity; Spinoza emphasised their ontological independence; Locke emphasised their role in relation to qualities.
     From: E.J. Lowe (Locke on Human Understanding [1995], Ch.4)
     A reaction: Note that this Aristotelian idea had not been jettisoned in the late seventeenth century, unlike other Aristotelianisms. I think it is only with the success of atomism in chemistry that the idea of substance is forced to recede.
12. Knowledge Sources / B. Perception / 6. Inference in Perception
Perception is a mode of belief-acquisition, and does not involve sensation [Lowe]
     Full Idea: According to one school of thought, perception is simply a mode of belief-acquisition,and there is no reason to suppose that any element of sensation is literally involved in perception.
     From: E.J. Lowe (Locke on Human Understanding [1995], Ch.3)
     A reaction: Blindsight would be an obvious supporting case for this view. I think this point is crucial in understanding what is wrong with Jackson's 'knowledge argument' (involving Mary, see Idea 7377). Sensation gives knowledge, so it can't be knowledge.
12. Knowledge Sources / B. Perception / 7. Causal Perception
Science requires a causal theory - perception of an object must be an experience caused by the object [Lowe]
     Full Idea: Only a causal theory of perception will respect the facts of physiology and physics ...meaning a theory which maintains that for a subject to perceive a physical object the subject should enjoy some appropriate perceptual experience caused by the object.
     From: E.J. Lowe (Locke on Human Understanding [1995], Ch.3)
     A reaction: If I hallucinate an object, then presumably I am not allowed to say that I 'perceive' it, but that seems to make the causal theory an idle tautology. If we are in virtual reality then there aren't any objects.
16. Persons / D. Continuity of the Self / 1. Identity and the Self
Personal identity is a problem across time (diachronic) and at an instant (synchronic) [Lowe]
     Full Idea: There is the question of the identity of a person over or across time ('diachronic' personal identity), and there is also the question of what makes for personal identity at a time ('synchronic' personal identity).
     From: E.J. Lowe (Locke on Human Understanding [1995], Ch.5)
     A reaction: This seems to me to be the first and most important distinction in the philosophy of personal identity, and they regularly get run together. Locke, for example, has an account of synchronic identity, which is often ignored. It applies to objects too.
18. Thought / B. Mechanics of Thought / 4. Language of Thought
Mentalese isn't a language, because it isn't conventional, or a means of public communication [Lowe]
     Full Idea: 'Mentalese' would be neither conventional nor a means of public communication so that even to call it a language is seriously misleading.
     From: E.J. Lowe (Locke on Human Understanding [1995], Ch.7)
     A reaction: It is, however, supposed to contain symbolic representations which are then used as tokens for computation, so it seems close to a language, if (for example) symbolic logic or mathematics were accepted as languages. But who understands it?
19. Language / A. Nature of Meaning / 2. Meaning as Mental
If meaning is mental pictures, explain "the cat (or dog!) is NOT on the mat" [Lowe]
     Full Idea: If meaning is a private mental picture, what does 'the cat is NOT on the mat' mean, and how does it differ from 'the dog is not on the mat?'.
     From: E.J. Lowe (Locke on Human Understanding [1995], Ch.7)
     A reaction: Not insurmountable. We picture an empty mat, combined with a cat (or whatever) located somewhere else. A mental 'picture' of something shouldn't be contrued as a single image in a neat black frame.