Combining Texts

All the ideas for 'Purifications (frags)', 'Russell's Mathematical Logic' and 'Logical Necessity'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
     Full Idea: Impredicative Definitions are definitions of an object by reference to the totality to which the object itself (and perhaps also things definable only in terms of that object) belong.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], n 13)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
The logic of metaphysical necessity is S5 [Rumfitt]
     Full Idea: It is a widely accepted thesis that the logic of metaphysical necessity is S5.
     From: Ian Rumfitt (Logical Necessity [2010], §5)
     A reaction: Rumfitt goes on to defend this standard view (against Dummett's defence of S4). The point, I take it, is that one can only assert that something is 'true in all possible worlds' only when the worlds are all accessible to one another.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
     Full Idea: In the superior realist and simple theory of types, the place of the axiom of reducibility is not taken by the axiom of classes, Zermelo's Aussonderungsaxiom.
     From: report of Kurt Gödel (Russell's Mathematical Logic [1944], p.140-1) by Bernard Linsky - Russell's Metaphysical Logic 6.1 n3
     A reaction: This is Zermelo's Axiom of Separation, but that too is not an axiom of standard ZFC.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
     Full Idea: 'Mathematical Logic' is a precise and complete formulation of formal logic, and is both a section of mathematics covering classes, relations, symbols etc, and also a science prior to all others, with ideas and principles underlying all sciences.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.447)
     A reaction: He cites Leibniz as the ancestor. In this database it is referred to as 'theory of logic', as 'mathematical' seems to be simply misleading. The principles of the subject are standardly applied to mathematical themes.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Soundness in argument varies with context, and may be achieved very informally indeed [Rumfitt]
     Full Idea: Our ordinary standards for deeming arguments to be sound vary greatly from context to context. Even the package tourist's syllogism ('It's Tuesday, so this is Belgium') may meet the operative standards for soundness.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: No doubt one could spell out the preconceptions of package tourist reasoning, and arrive at the logical form of the implication which is being offered.
There is a modal element in consequence, in assessing reasoning from suppositions [Rumfitt]
     Full Idea: There is a modal element in consequence, in its applicability to assessing reasoning from suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
We reject deductions by bad consequence, so logical consequence can't be deduction [Rumfitt]
     Full Idea: A rule is to be rejected if it enables us to deduce from some premisses a purported conclusion that does not follow from them in the broad sense. The idea that deductions answer to consequence is incomprehensible if consequence consists in deducibility.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Contradictions include 'This is red and not coloured', as well as the formal 'B and not-B' [Rumfitt]
     Full Idea: Overt contradictions include formal contradictions of form 'B and not B', but I also take them to include 'This is red all over and green all over' and 'This is red and not coloured'.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
     Full Idea: One may, on good grounds, deny that reference to a totality necessarily implies reference to all single elements of it or, in other words, that 'all' means the same as an infinite logical conjunction.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.455)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Geometrical axioms in logic are nowadays replaced by inference rules (which imply the logical truths) [Rumfitt]
     Full Idea: The geometrical style of formalization of logic is now little more than a quaint anachronism, largely because it fails to show logical truths for what they are: simply by-products of rules of inference that are applicable to suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §1)
     A reaction: This is the rejection of Russell-style axiom systems in favour of Gentzen-style natural deduction systems (starting from rules). Rumfitt quotes Dummett in support.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
     Full Idea: In order to be sure that new expression can be translated into expressions not containing them, it is necessary to have a survey of all possible expressions, and this can be furnished only by syntactical considerations.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.448)
     A reaction: [compressed]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
     Full Idea: The generalized Continuum Hypothesis says that there exists no cardinal number between the power of any arbitrary set and the power of the set of its subsets.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
     Full Idea: It has turned out that the solution of certain arithmetical problems requires the use of assumptions essentially transcending arithmetic.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.449)
     A reaction: A nice statement of the famous result, from the great man himself, in the plainest possible English.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
     Full Idea: Classes and concepts may be conceived of as real objects, ..and are as necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions, with neither case being about 'data'.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.456)
     A reaction: Note that while he thinks real objects are essential for mathematics, be may not be claiming the same thing for our knowledge of logic. If logic contains no objects, then how could mathematics be reduced to it, as in logicism?
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
     Full Idea: Impredicative definitions are admitted into ordinary mathematics.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
     A reaction: The issue is at what point in building an account of the foundations of mathematics (if there be such, see Putnam) these impure definitions should be ruled out.
10. Modality / A. Necessity / 3. Types of Necessity
A distinctive type of necessity is found in logical consequence [Rumfitt, by Hale/Hoffmann,A]
     Full Idea: Rumfitt argues that there is a distinctive notion of necessity implicated in the notion of logical consequence.
     From: report of Ian Rumfitt (Logical Necessity [2010]) by Bob Hale/ Aviv Hoffmann - Introduction to 'Modality' 2
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity is when 'necessarily A' implies 'not-A is contradictory' [Rumfitt]
     Full Idea: By the notion of 'logical necessity' I mean that there is a sense of 'necessary' for which 'It is necessary that A' implies and is implied by 'It is logically contradictory that not A'. ...From this, logical necessity is implicated in logical consequence.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: Rumfitt expresses a commitment to classical logic at this point. We will need to be quite sure what we mean by 'contradiction', which will need a clear notion of 'truth'....
A logically necessary statement need not be a priori, as it could be unknowable [Rumfitt]
     Full Idea: There is no reason to suppose that any statement that is logically necessary (in the present sense) is knowable a priori. ..If a statement is logically necessary, its negation will yield a contradiction, but that does not imply that someone could know it.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
     A reaction: This remark is aimed at Dorothy Edgington, who holds the opposite view. Rumfitt largely defends McFetridge's view (q.v.).
Narrow non-modal logical necessity may be metaphysical, but real logical necessity is not [Rumfitt]
     Full Idea: While Fine suggests defining a narrow notion of logical necessity in terms of metaphysical necessity by 'restriction' (to logical truths that can be defined in non-modal terms), this seems unpromising for broad logical necessity, which is modal.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
     A reaction: [compressed] He cites Kit Fine 2002. Rumfitt glosses the non-modal definitions as purely formal. The metaphysics lurks somewhere in the proof.
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
If a world is a fully determinate way things could have been, can anyone consider such a thing? [Rumfitt]
     Full Idea: A world is usually taken to be a fully determinate way that things could have been; but then one might seriously wonder whether anyone is capable of 'considering' such a thing at all.
     From: Ian Rumfitt (Logical Necessity [2010], §4)
     A reaction: This has always worried me. If I say 'maybe my coat is in the car', I would hate to think that I had to be contemplating some entire possible world (including all the implications of my coat not being on the hat stand).