Combining Texts

All the ideas for 'fragments/reports', 'Mathematics and Philosophy: grand and little' and 'Higher-Order Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

1. Philosophy / D. Nature of Philosophy / 3. Philosophy Defined
Even pointing a finger should only be done for a reason [Epictetus]
     Full Idea: Philosophy says it is not right even to stretch out a finger without some reason.
     From: Epictetus (fragments/reports [c.57], 15)
     A reaction: The key point here is that philosophy concerns action, an idea on which Epictetus is very keen. He rather despise theory. This idea perfectly sums up the concept of the wholly rational life (which no rational person would actually want to live!).
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Philosophy aims to reveal the grandeur of mathematics [Badiou]
     Full Idea: Philosophy's role consists in informing mathematics of its own speculative grandeur.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.11)
     A reaction: Revealing the grandeur of something sounds more like a rhetorical than a rational exercise. How would you reveal the grandeur of a sunset to someone?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
In mathematics, if a problem can be formulated, it will eventually be solved [Badiou]
     Full Idea: Only in mathematics can one unequivocally maintain that if thought can formulate a problem, it can and will solve it, regardless of how long it takes.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.17)
     A reaction: I hope this includes proving the Continuum Hypothesis, and Goldbach's Conjecture. It doesn't seem quite true, but it shows why philosophers of a rationalist persuasion are drawn to mathematics.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Mathematics shows that thinking is not confined to the finite [Badiou]
     Full Idea: Mathematics teaches us that there is no reason whatsoever to confne thinking within the ambit of finitude.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.19)
     A reaction: This would perhaps make Cantor the greatest thinker who ever lived. It is an exhilarating idea, but we should ward the reader against romping of into unrestrained philosophical thought about infinities. You may be jumping without your Cantorian parachute.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
     Full Idea: Full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
     A reaction: [he credits Cowles for this remark] Having an unworkable model theory sounds pretty serious to me, as I'm not inclined to be interested in languages which don't produce models of some sort. Surely models are the whole point?
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
Mathematics inscribes being as such [Badiou]
     Full Idea: Mathematics inscribes being as such.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.12)
     A reaction: I don't pretend to understand that, but there is something about the purity and certainty of mathematics that makes us feel we are grappling with the core of existence. Perhaps. The same might be said of stubbing your toe on a bedpost.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
It is of the essence of being to appear [Badiou]
     Full Idea: It is of the essence of being to appear.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.16)
     A reaction: Nice slogan. In my humble opinion 'continental' philosophy is well worth reading because, despite the fluffy rhetoric and the shameless egotism and the desire to shock the bourgeoisie, they occasionally make wonderfully thought-provoking remarks.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
     Full Idea: In studying second-order logic one can think of relations and functions as extensional or intensional, or one can leave it open. Little turns on this here, and so words like 'property', 'class', and 'set' are used interchangeably.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.2.1)
     A reaction: Important. Students of the metaphysics of properties, who arrive with limited experience of logic, are bewildered by this attitude. Note that the metaphysics is left wide open, so never let logicians hijack the metaphysical problem of properties.
21. Aesthetics / B. Nature of Art / 8. The Arts / b. Literature
All great poetry is engaged in rivalry with mathematics [Badiou]
     Full Idea: Like every great poet, Mallarmé was engaged in a tacit rivalry with mathematics.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.20)
     A reaction: I love these French pronouncements! Would Mallarmé have agreed? If poetry and mathematics are the poles, where is philosophy to be found?