Combining Texts

All the ideas for 'fragments/reports', 'A Mathematical Introduction to Logic (2nd)' and 'Logic (Port-Royal Art of Thinking)'

unexpand these ideas     |    start again     |     specify just one area for these texts


37 ideas

1. Philosophy / D. Nature of Philosophy / 3. Philosophy Defined
Even pointing a finger should only be done for a reason [Epictetus]
     Full Idea: Philosophy says it is not right even to stretch out a finger without some reason.
     From: Epictetus (fragments/reports [c.57], 15)
     A reaction: The key point here is that philosophy concerns action, an idea on which Epictetus is very keen. He rather despise theory. This idea perfectly sums up the concept of the wholly rational life (which no rational person would actually want to live!).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
     Full Idea: Until the 1960s standard truth-table semantics were the only ones that there were.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.10.1)
     A reaction: The 1960s presumably marked the advent of possible worlds.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
     Full Idea: 'dom R' indicates the 'domain' of a relation, that is, the set of all objects that are members of ordered pairs and that have that relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'ran R' indicates the 'range' of objects being related to [Enderton]
     Full Idea: 'ran R' indicates the 'range' of a relation, that is, the set of all objects that are members of ordered pairs and that are related to by the first objects.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'fld R' indicates the 'field' of all objects in the relation [Enderton]
     Full Idea: 'fld R' indicates the 'field' of a relation, that is, the set of all objects that are members of ordered pairs on either side of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
     Full Idea: We write F : A → B to indicate that A maps into B, that is, the domain of relating things is set A, and the things related to are all in B. If we add that F = B, then A maps 'onto' B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'F(x)' is the unique value which F assumes for a value of x [Enderton]
     Full Idea: F(x) is a 'function', which indicates the unique value which y takes in ∈ F. That is, F(x) is the value y which F assumes at x.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
     Full Idea: Equivalence classes will 'partition' a set. That is, it will divide it into distinct subsets, according to each relation on the set.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
     Full Idea: An 'equivalence relation' is a binary relation which is reflexive, and symmetric, and transitive.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
     Full Idea: The process is dubbed 'conversational implicature' when the inference is not from the content of what has been said, but from the fact that it has been said.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7.3)
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
     Full Idea: The point of logic is to give an account of the notion of validity,..in two standard ways: the semantic way says that a valid inference preserves truth (symbol |=), and the proof-theoretic way is defined in terms of purely formal procedures (symbol |-).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.3..)
     A reaction: This division can be mirrored in mathematics, where it is either to do with counting or theorising about things in the physical world, or following sets of rules from axioms. Language can discuss reality, or play word-games.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
     Full Idea: A is a logical truth (tautology) (|= A) iff it is a semantic consequence of the empty set of premises (φ |= A), that is, every interpretation makes A true.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.3.4)
     A reaction: So the final column of every line of the truth table will be T.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
     Full Idea: A truth assignment 'satisfies' a formula, or set of formulae, if it evaluates as True when all of its components have been assigned truth values.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.2)
     A reaction: [very roughly what Enderton says!] The concept becomes most significant when a large set of wff's is pronounced 'satisfied' after a truth assignment leads to them all being true.
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
     Full Idea: If every proof-theoretically valid inference is semantically valid (so that |- entails |=), the proof theory is said to be 'sound'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
     Full Idea: If a wff is tautologically implied by a set of wff's, it is implied by a finite subset of them; and if every finite subset is satisfiable, then so is the whole set of wff's.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: [Enderton's account is more symbolic] He adds that this also applies to models. It is a 'theorem' because it can be proved. It is a major theorem in logic, because it brings the infinite under control, and who doesn't want that?
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
     Full Idea: A set of expressions is 'decidable' iff there exists an effective procedure (qv) that, given some expression, will decide whether or not the expression is included in the set (i.e. doesn't contradict it).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7)
     A reaction: This is obviously a highly desirable feature for a really reliable system of expressions to possess. All finite sets are decidable, but some infinite sets are not.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
We can rise by degrees through abstraction, with higher levels representing more things [Arnauld,A/Nicole,P]
     Full Idea: I can start with a triangle, and rise by degrees to all straight-lined figures and to extension itself. The lower degree will include the higher degree. Since the higher degree is less determinate, it can represent more things.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: [compressed] This attempts to explain the generalising ability of abstraction cited in Idea 10501. If you take a complex object and eliminate features one by one, it can only 'represent' more particulars; it could hardly represent fewer.
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
     Full Idea: Not all sentences using 'if' are conditionals. Consider 'if you want a banana, there is one in the kitchen'. The rough test is that a conditional can be rewritten as 'that A implies that B'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.6.4)
12. Knowledge Sources / B. Perception / 3. Representation
We can only know the exterior world via our ideas [Arnauld,A/Nicole,P]
     Full Idea: We can have knowledge of what is outside us only through the mediation of ideas in us.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], p.63), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 1 'Conc'
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Forms make things distinct and explain the properties, by pure form, or arrangement of parts [Arnauld,A/Nicole,P]
     Full Idea: The form is what renders a thing such and distinguishes it from others, whether it is a being really distinct from the matter, according to the Schools, or whether it is only the arrangement of the parts. By this form one must explain its properties.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], III.18 p240), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 27.6
     A reaction: If we ask 'what explains the properties of this thing' it is hard to avoid coming up with something that might be called the 'form'. Note that they allow either substantial or corpuscularian forms. It is hard to disagree with the idea.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We know by abstraction because we only understand composite things a part at a time [Arnauld,A/Nicole,P]
     Full Idea: The mind cannot perfectly understand things that are even slightly composite unless it considers them a part at a time. ...This is generally called knowing by abstraction. (..the human body, for example).
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: This adds the interesting thought that the mind is forced to abstract, rather than abstraction being a luxury extra feature. Knowledge through analysis is knowledge by abstraction. Also a nice linking of abstraction to epistemology.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
A triangle diagram is about all triangles, if some features are ignored [Arnauld,A/Nicole,P]
     Full Idea: If I draw an equilateral triangle on a piece of paper, ..I shall have an idea of only a single triangle. But if I ignore all the particular circumstances and focus on the three equal lines, I will be able to represent all equilateral triangles.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: [compressed] They observed that we grasp composites through their parts, and now that we can grasp generalisations through particulars, both achieved by the psychological act of abstraction, thus showing its epistemological power.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
No one denies that a line has width, but we can just attend to its length [Arnauld,A/Nicole,P]
     Full Idea: Geometers by no means assume that there are lines without width or surfaces without depth. They only think it is possible to consider the length without paying attention to the width. We can measure the length of a path without its width.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: A nice example which makes the point indubitable. The modern 'rigorous' account of abstraction that starts with Frege seems to require more than one object, in order to derive abstractions like direction or number. Path widths are not comparatives.