Combining Texts

All the ideas for 'fragments/reports', 'Modal Logic within Counterfactual Logic' and 'Introduction to Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

1. Philosophy / D. Nature of Philosophy / 3. Philosophy Defined
Even pointing a finger should only be done for a reason [Epictetus]
     Full Idea: Philosophy says it is not right even to stretch out a finger without some reason.
     From: Epictetus (fragments/reports [c.57], 15)
     A reaction: The key point here is that philosophy concerns action, an idea on which Epictetus is very keen. He rather despise theory. This idea perfectly sums up the concept of the wholly rational life (which no rational person would actually want to live!).
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
In S5 matters of possibility and necessity are non-contingent [Williamson]
     Full Idea: In system S5 matters of possibility and necessity are always non-contingent.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 3)
     A reaction: This will be because if something is possible in one world (because it can be seen to be true in some possible world) it will be possible for all worlds (since they can all see that world in S5).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
10. Modality / A. Necessity / 1. Types of Modality
Necessity is counterfactually implied by its negation; possibility does not counterfactually imply its negation [Williamson]
     Full Idea: Modal thinking is logically equivalent to a type of counterfactual thinking. ...The necessary is that which is counterfactually implied by its own negation; the possible is that which does not counterfactually imply its own negation.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 1)
     A reaction: I really like this, because it builds modality on ordinary imaginative thinking. He says you just need to grasp counterfactuals, and also negation and absurdity, and you can then understand necessity and possibility. We can all do that.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Strict conditionals imply counterfactual conditionals: □(A⊃B)⊃(A□→B) [Williamson]
     Full Idea: The strict conditional implies the counterfactual conditional: □(A⊃B) ⊃ (A□→B) - suppose that A would not have held without B holding too; then if A had held, B would also have held.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 1)
     A reaction: [He then adds a reading of his formula in terms of possible worlds] This sounds rather close to modus ponens. If A implies B, and A is actually the case, what have you got? B!
10. Modality / B. Possibility / 9. Counterfactuals
Counterfactual conditionals transmit possibility: (A□→B)⊃(◊A⊃◊B) [Williamson]
     Full Idea: The counterfactual conditional transmits possibility: (A□→B) ⊃ (◊A⊃◊B). Suppose that if A had held, B would also have held; the if it is possible for A to hold, it is also possible for B to hold.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 1)
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Rather than define counterfactuals using necessity, maybe necessity is a special case of counterfactuals [Williamson, by Hale/Hoffmann,A]
     Full Idea: Instead of regarding counterfactuals as conditionals restricted to a range of possible worlds, we can define the necessity operator by means of counterfactuals. Metaphysical necessity is a special case of ordinary counterfactual thinking.
     From: report of Timothy Williamson (Modal Logic within Counterfactual Logic [2010]) by Bob Hale/ Aviv Hoffmann - Introduction to 'Modality' 2
     A reaction: [compressed] I very much like Williamson's approach, of basing these things on the ordinary way that ordinary people think. To me it is a welcome inclusion of psychology into metaphysics, which has been out in the cold since Frege.
15. Nature of Minds / C. Capacities of Minds / 2. Imagination
Imagination is important, in evaluating possibility and necessity, via counterfactuals [Williamson]
     Full Idea: Imagination can be made to look cognitively worthless. Once we recall its fallible but vital role in evaluating counterfactual conditionals, we should be more open to the idea that it plays such a role in evaluating claims of possibility and necessity.
     From: Timothy Williamson (Modal Logic within Counterfactual Logic [2010], 6)
     A reaction: I take this to be a really important idea, because it establishes the importance of imagination within the formal framework of modern analytic philosopher (rather than in the whimsy of poets and dreamers).