Combining Texts

All the ideas for 'Against Coherence', 'Process and Reality' and 'On the Infinite'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / c. Classical philosophy
European philosophy consists of a series of footnotes to Plato [Whitehead]
     Full Idea: The safest general characterization of the European philosophical tradition is that it consists of a series of footnotes to Plato.
     From: Alfred North Whitehead (Process and Reality [1929], p.39)
     A reaction: Outsiders think this is a ridiculous remark, but readers of Plato can only be struck by what a wonderful tribute Whitehead has come up with. I would say that at least 80% of this database deals with problems which were discussed at length by Plato.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
With 'extensive connection', boundary elements are not included in domains [Whitehead, by Varzi]
     Full Idea: In Whitehead's theory of extensive connection, no boundary elements are included in the domain of quantification. ...His conception of space contains no parts of lower dimensions, such as points or boundary elements.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Achille Varzi - Mereology 3.1
     A reaction: [Varzi says we should see B.L.Clarke 1981 for a rigorous formulation. Second half of the Idea is Varzi p.21]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
7. Existence / B. Change in Existence / 2. Processes
In Whitehead 'processes' consist of events beginning and ending [Whitehead, by Simons]
     Full Idea: There are no items in Whitehead's ontology called 'processes'. Rather, the term 'process' refers to the way in which the basic things - which are still events - come into existence and cease to exist. Whitehead called this 'becoming'.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Peter Simons - Whitehead: process and cosmology 'The mature'
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Incoherence may be more important for enquiry than coherence [Olsson]
     Full Idea: While coherence may lack the positive role many have assigned to it, ...incoherence plays an important negative role in our enquiries.
     From: Erik J. Olsson (Against Coherence [2005], 10.1)
     A reaction: [He cites Peirce as the main source for this idea] We can hardly by deeply impressed by incoherence if we have no sense of coherence. Incoherence is just one of many markers for theory failure. Missing the target, bad concepts...
Coherence is the capacity to answer objections [Olsson]
     Full Idea: According to Lehrer, coherence should be understood in terms of the capacity to answer objections.
     From: Erik J. Olsson (Against Coherence [2005], 9)
     A reaction: [Keith Lehrer 1990] We can connect this with the Greek requirement of being able to give an account [logos], which is the hallmark of understanding. I take coherence to be the best method of achieving understanding. Any understanding meets Lehrer's test.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / c. Coherentism critique
Mere agreement of testimonies is not enough to make truth very likely [Olsson]
     Full Idea: Far from guaranteeing a high likelihood of truth by itself, testimonial agreement can apparently do so only if the circumstances are favourable as regards independence, prior probability, and individual credibility.
     From: Erik J. Olsson (Against Coherence [2005], 1)
     A reaction: This is Olson's main thesis. His targets are C.I.Lewis and Bonjour, who hoped that a mere consensus of evidence would increase verisimilitude. I don't see a problem for coherence in general, since his favourable circumstances are part of it.
Coherence is only needed if the information sources are not fully reliable [Olsson]
     Full Idea: An enquirer who is fortunate enough to have at his or her disposal fully reliable information sources has no use for coherence, the need for which arises only in the context of less than fully reliable informations sources.
     From: Erik J. Olsson (Against Coherence [2005], 2.6.2)
     A reaction: I take this to be entirely false. How do you assess reliability? 'I've seen it with my own eyes'. Why trust your eyes? In what visibility conditions do you begin to doubt your eyes? Why do rational people mistrust their intuitions?
A purely coherent theory cannot be true of the world without some contact with the world [Olsson]
     Full Idea: The Input Objection says a pure coherence theory would seem to allow that a system of beliefs be justified in spite of being utterly out of contact with the world it purports to describe, so long as it is, to a sufficient extent, coherent.
     From: Erik J. Olsson (Against Coherence [2005], 4.1)
     A reaction: Olson seems impressed by this objection, but I don't see how a system could be coherently about the world if it had no known contact with the world. Olson seems to ignore meta-coherence, which evaluates the status of the system being studied.
Extending a system makes it less probable, so extending coherence can't make it more probable [Olsson]
     Full Idea: Any non-trivial extension of a belief system is less probable than the original system, but there are extensions that are more coherent than the original system. Hence more coherence does not imply a higher probability.
     From: Erik J. Olsson (Against Coherence [2005], 6.4)
     A reaction: [Olson cites Klein and Warfield 1994; compressed] The example rightly says the extension could have high internal coherence, but not whether the extension is coherent with the system being extended.
26. Natural Theory / C. Causation / 1. Causation
Whitehead held that perception was a necessary feature of all causation [Whitehead, by Harré/Madden]
     Full Idea: On Whitehead's view, not only is a volitional sense of 'causal power' projected on to physical events, but 'perception in the causal mode' is literally ascribed to them.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Harré,R./Madden,E.H. - Causal Powers 3.II
     A reaction: This seems to be a close relative of Leibniz's monads. 'Perception' is a daft word for it, but in some way everything is 'responsive' to the things adjacent to it.
27. Natural Reality / C. Space / 3. Points in Space
Whitehead replaced points with extended regions [Whitehead, by Quine]
     Full Idea: Whitehead tried to avoid points, and make do with extended regions and sets of regions.
     From: report of Alfred North Whitehead (Process and Reality [1929]) by Willard Quine - Existence and Quantification p.93